首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorhexidine (CH) is an effective antimicrobial agent. There has been very little work published concerning the interactions of CH with, and its adsorption mechanism on, cellulose. In this paper, such physical chemistry parameters are examined and related to computational chemistry studies. Adsorption isotherms were constructed following application of CH to cellulose. These were typical of a Langmuir adsorption isotherm, but at higher concentrations displayed good correlation also with a Freundlich isotherm. Sorption was attributed to a combination of electrostatic (major contribution) and hydrogen bonding forces, which endorsed computational chemistry proposals: electrostatic interactions between CH and carboxylic acid groups in the cellulose dominate with a contribution to binding through hydrogen bonding of the biguanide residues and the p-chlorophenol moieties (Yoshida H-bonding) with the cellulose hydroxyl groups. At high CH concentrations, there is evidence of monolayer and bilayer aggregation. Differences in sorption between CH and another antimicrobial agent previously studied, poly(hexamethylenebiguanide) (PHMB), are attributed to higher molecular weight of PHMB and higher charge density of biguanide residues in CH (due to the relative electron withdrawing effect of the p-chlorophenol moiety).  相似文献   

2.
Hydroxyethyl cellulose and its hydrophobically modified derivatives are widely used in many industrial areas such as pharmaceuticals, cosmetics, textiles, paint and mineral industries. However, the interaction mechanisms of these biopolymers and solids have not been established. In this work, the interaction mechanism and conformation of hydrophobically modified ethyl(hydroxyethyl) cellulose (C(14)-EHEC) have been investigated using spectroscopic, AFM and allied techniques. Comparison was made with corresponding unmodified analogue in order to investigate the effects of the hydrophobic modification. Electrokinetic studies showed that polysaccharides adsorption decreased the negative zeta potential of talc but did not reverse the charge. EHEC adsorption on talc was not found to be affected significantly by changes in solution conditions such as pH and ionic strength, ruling out electrostatic force as the controlling factor. However, HM-EHEC adsorption was found to increase markedly with increase in ionic strength from 0.1 to 1 suggesting a role for the hydrophobic force in this adsorption process. Fluorescence spectroscopic studies conducted to investigate the role of hydrophobic bonding using pyrene probe showed no evidence of the formation of hydrophobic domains at talc-aqueous interface. Urea, a hydrogen bond breaker, reduced the adsorption of HM-EHEC on talc markedly. In FTIR study, the changes in the infrared bands, associated with the CO stretch coupled to the CC stretch and OH deformation, were significant and therefore support strong hydrogen bonding of HM-EHEC on the solid surface. Moreover, Langmuir modeling of the adsorption isotherms suggests hydrogen bonding to be a major force for the adsorption of EHEC and C(14)-EHEC on solid since the adsorption free energies of these polymers were close to that for hydrogen bond formation. All of the above results suggest that the main driving force for EHEC adsorption on talc is hydrogen bonding rather than electrostatic interaction or hydrophobic force. For hydrophobically modified C(14)-EHEC, hydrophobic force plays a synergetic role in adsorption along with hydrogen bonding. From computer modeling and AFM imaging, it is proposed that C(0)-EHEC and C(14)-EHEC adsorb flat on talc with ethylene oxide side chains and hydrophobic groups protruding out from the surface into bulk water phase.  相似文献   

3.
Comparative investigations of adsorption properties of chlorhexidine (CHX) on two cellulose fibers, bleached cotton and viscose, were studied in order to obtain dry gauzes covered with known amount of this antiseptic. Adsorption isotherm results carried out at 293 and 323 K can be described by Langmuir isotherm model, nevertheless, at high concentration correlation is better to Freundlich isotherm. Electrokinetic potential evolution with CHX concentration, shows that initial negative zeta potential of cotton and viscose diminish its absolute value as the concentration of the treatment increases; both fibers present an isoelectric point at high concentration of CHX that is 0.3 mM for viscose and 0.8 mM for cotton. Electrostatic interactions between cationic groups of CHX and carboxylic acid groups of the fibers could explain adsorption at low concentration, but when it is higher than these values, possible hydrogen bonding between the amine groups of CHX and hydroxyl groups of cellulose could explain increasing adsorption when it is hindered by electrostatic repulsion as it is predicted by Freundlich model, that describes heterogeneous surface and multilayer adsorption. Adsorption kinetics isotherms reveal that the process is quick with t 1/2 values of 5.4 min for cotton and 2.8 min for viscose. Differences in adsorption behaviour between the two fibers could be attributed to structural differences as we have observed from estimation of CI index based on FTIR spectra. Values obtained 1.6 for viscose and 2.2 for cotton could explain that the amount of CHX adsorbed on viscose is higher than it is on cotton. Finally desorption experiments performed with 0.01 M of NaCl solution at room temperature and pH 6 reveals the possibility of therapeutical application of these fibers although further investigations must be done to optimize the process.  相似文献   

4.
The mechanisms of high-molecular-weight polyacrylamide nonionic homopolymer and 25 mol% anionic acrylate-substituted copolymer adsorption onto iron oxide particles were investigated via DRIFT and UV-vis spectroscopies at three pH values (6, 8.5, and 11). While electrostatic interactions play an important role in charged polymer adsorption, this information is not spectroscopically available. At pH values above and below pH 8.5 (the isoelectric point for the anionic polymer), bidentate chelation and hydrogen bonding were the main adsorption mechanisms. At the isoelectric point, monodentate chelation was observed to be the main mode of adsorption, along with hydrogen bonding. For the nonionic polymer, in all cases, hydrogen bonding through the carbonyl group was the main mode of adsorption. The adsorption of both polymers conformed well to the Freundlich model, suggesting that the adsorbed polymer amount increases with increasing polymer concentration up to 7500 g/t solid, rather than approaching monolayer coverage. Spectroscopic evidence was found to suggest that hydrolysis of nonionic polyacrylamide occurs at high pH.  相似文献   

5.
Complex networks of hydrogen bonds within the cellulose Iα and Iβ contribute greatly to cellulose's anisotropic physical properties such as material stiffness. The interchain hydrogen bonding interactions through hydroxyl groups are isolated in each of the three lattice planes of the adjacent chains within the unit cell of two allomorphs of natural cellulose. In our density function theory study with dispersion corrected Perdew–Burke–Ernzerhof (PBE‐D2) functional, these hydroxyl groups participate in strong hydrogen bonding interactions (?24.8 and ?24.8 kcal/mol for cellulose Iα and Iβ, respectively) in the side‐to‐side lattice plane. Unexpectedly, the hydroxyl groups also participate significantly in hydrogen bonding interactions (?11.0 and ?12.4 kcal/mol for cellulose Iα and Iβ, respectively) in one of the diagonal lattice planes in both cellulose Iα and Iβ. Both PM7 and PBE‐D2 method predict that the overall interaction is asymmetric and stronger in the right diagonal lattice plane. While hydrogen bonding interactions are strongest in side‐to‐side lattice plane as expected, the role of hydrogen bonding interactions for keeping the sheet together is more significant than previously thought.  相似文献   

6.
The effects of functional groups on polymer adsorption onto titania pigment particles have been investigated as a function of pH and ionic strength using polyacrylic acid and modified polyacrylamides. The polyacrylamides include the homopolymer, an anionic copolymer with hydroxyl and carboxylate group substitution, and a nonionic copolymer with hydroxyl group substitution. Adsorption isotherms and infrared spectroscopy were used to examine the polymer-pigment interactions. The adsorption of the polyacrylic acid and anionic polyacrylamide on titania pigment is greatest when electrostatic repulsion is absent or reduced. At low pH values, below the pigment isoelectric point (IEP), or at high ionic strength, the adsorption density of the anionic polymers on titania pigment is high, while at higher pH values above the pigment IEP, the adsorption density decreases. But the adsorption of nonionic polymers on titania pigment is not influenced by either ionic strength or pH. Acrylamide groups were found to hydrogen bond with the titania pigment surface, independent of pH. With the inclusion of hydroxyl functional groups into the polyacrylamide chain, the polymer adsorption density increased without increased adsorption affinity. Carboxylate functional groups in the anionic polymers strongly interact with the pigment surface, producing the highest adsorption density at low pH values. All polymers exhibit Langmuir adsorption behavior with hydrogen bonding found as the dominant mechanism of adsorption in addition to electrostatic interaction occurring for the anionic polymers.  相似文献   

7.
大孔交联聚(对乙烯基苄基苯胺)树脂对苯酚的吸附   总被引:1,自引:0,他引:1  
由氯甲基化聚苯乙烯合成了大孔交联聚(对乙烯基苄基苯胺)树脂, 测定了其对正己烷和水中苯酚的吸附等温线, 计算了吸附焓. 结果表明, 苯胺基树脂主要是通过氢键吸附正己烷中苯酚的, 树脂负载的功能基氮原子和苯环都作为氢键受体与苯酚的羟基氢原子形成氢键, 而其对水中苯酚的吸附是基于氢键和疏水作用.  相似文献   

8.
Macroporous crosslinked poly(p-vinylbenzylaniline) (PVBA) was synthesized and its adsorption isotherms for phenol in hexane and in aqueous solution were comparatively measured. It was shown that the adsorption isotherms in hexane were straight lines and passed through the origin, whereas those in aqueous solution could be simulated by Freundlich isotherms. Adsorption enthalpies of phenol onto PVBA were calculated, and the results indicated that the adsorption was an exothermic process. Comparison of the adsorption behaviors of PVBA, poly(p-vinylbenzylmethylamine) (PVBMA), and poly(p-vinylbenzyl-p-nitroaniline) (PVBNA) for phenol in hexane suggested that hydrogen bonding and pi-pi stacking were primarily responsible for the adsorption, the nitrogen atom and benzene ring of PVBA acted as hydrogen bonding acceptors and formed hydrogen bonding with the hydrogen atom of hydroxyl group of phenol. Investigation of the adsorption mechanism in aqueous solution revealed that hydrogen bonding and hydrophobic interaction were the main driving forces.  相似文献   

9.
The recent intensification of industrially produced cellulose nanocrystals (CNCs) and cellulose nanofibrils has positioned nanocelluloses as promising materials for many water-based products and applications. However, for nanocelluloses to move beyond solely an academic interest, a thorough understanding of their interaction with water-soluble polymers is needed. In this work, we address a conflicting trend in literature that suggests polyethylene glycol (PEG) adsorbs to CNC surfaces by comparing the adsorption behaviour of PEG with CNCs versus fumed silica. While PEG is known to have strong hydrogen bonding tendencies and holds water tightly, it is sometimes (we believe erroneously) presumed that PEG binds to cellulose through hydrogen bonding in aqueous media. To test this assumption, the adsorption of PEG to CNCs and fumed silica (both in the form of particle films and in aqueous dispersions) was examined using quartz crystal microbalance with dissipation, isothermal titration calorimetry, rheology and dynamic light scattering. For all PEG molecular weights (300–10,000 g/mol) and concentrations (100–10,000 ppm) tested, strong rapid adsorption was found with fumed silica, whereas no adsorption to CNCs was observed. We conclude that unlike silanols, the hydroxyl groups on the surface of CNCs do not readily hydrogen bond with the ether oxygen in the PEG backbone. As such, this work along with previous papermaking literature supports the opinion that PEG does not adsorb to cellulose surfaces.  相似文献   

10.
The objective of this study was to establish a reasonably simple and reliable method to measure very low concentrations of polyhexamethylene biguanide (PHMB) in multipurpose contact lens solutions (MPSs). By using a weak cation exchange solid phase extraction cartridge to extract the PHMB from MPS, followed by HPLC analysis using an evaporative light scattering detector, low levels (0.1 ppm) of PHMB were detected. Application of this method to a series of off-the-shelf MPS with PHMB as the active ingredient demonstrated these solutions contain 1 ppm. The contact lens solution with hydrogen peroxide as the active ingredient gave no peak where the PHMB peak eluted. The Polyquad® contact lens solution generated a peak close to the retention time of PHMB. Recovery of PHMB from fortified hydrogen peroxide contact lens solution was good at 0.25 ppm and above; 105% with a RSD of 17% or less. The repeatability of the HPLC system ranged from 4 to 11% RSD; the reproducibility of the entire method was less than 17.5% RSD. Storage and stability studies indicated that storage of MPS with PHMB for chemical analysis are not temperature dependent, but are affected by the composition of the container in which the contact lens solution is stored.  相似文献   

11.
Coal origin and wood origin activated carbons were used in this study. To broaden the spectrum of surface features, the surface of the initial samples was modified using oxidation with nitric acid or impregnation with urea followed by heat treatment. Boehm and potentiometric titrations, thermal analysis, and sorption of nitrogen were used to characterize the pore structure and surface chemistry. Then adsorption of ethylmethylamine from aqueous solutions was carried out without controlling the pH of the carbon suspension. The isotherms were measured at 299 K and fitted to the Freundlich equation. The results showed that the amount of ethylmethylamine adsorbed on all carbons at a high concentration is dependent on the total number of surface groups whereas at low concentration it depends on the type of surface groups. The latter was observed exclusively for initial and oxidized carbons where acidic groups are present. The ethylmethylamine adsorption is mainly governed by dipole-dipole, hydrogen bonding, or specific acid-base interactions. Those interactions play a crucial role in incorporation of nitrogen to the carbon matrix at elevated temperatures.  相似文献   

12.
The adsorption of humic acid (HA) on kaolin particles was studied at various conditions of initial solution pH, ionic strength and solid-to-liquid ratio. The resulting affinity of interactions between humic acid and kaolin was attributed to the surface coordination of HA in ambient suspensions of mineral particles and the strong electrostatic force at low pH. Addition of inorganic salt can also influence the adsorption behavior by affecting the HA molecular structure, the clay particle zeta potential and so on. Equilibrium data were well fitted by the Freundlich model and implied the occurrence of multilayer adsorption in the process. In addition, the enthalpy dependent of system temperature was 79.17 kJ/mol, which proved that the mechanism of HA adsorption onto kaolin was comprehensive, including electrostatic attraction, ligand complexation and hydrogen bonding.  相似文献   

13.
Carboxymethyl cellulose (CMC) is a polysaccharide which is widely used in many industrial sectors including food, textiles, paper, adhesives, paints, pharmaceutics, cosmetics and mineral processing. It is a natural organic polymer that is non-toxic and biodegradable. These properties make it ideal for industrial applications. However, a general lack of understanding of the interaction mechanism between the polysaccharides and solid surfaces has hindered the application of this polymer. In this work, adsorption of CMC at the solid-liquid interface is investigated using adsorption and electrophoretic mobility measurements, FTIR, fluorescence spectroscopy, AFM and molecular modeling. CMC adsorption on talc was found to be affected significantly by changes in solution conditions such as pH and ionic strength, which indicates the important role of electrostatic force in adsorption. The pH effect on adsorption was further proven by AFM imaging. Electrokinetic studies showed that the adsorption of CMC on talc changed its isoelectric point. Further, molecular modeling suggests a helical structure of CMC in solution while it is found to adsorb flat on the solid surface to allow its OH groups to be in contact with the surface. Fluorescence spectroscopy studies conducted to investigate the role of hydrophobic bonding using pyrene probe showed no evidence of the formation of hydrophobic domains at talc-aqueous interface. Urea, a hydrogen bond breaker, markedly reduced the adsorption of CMC on talc, supports hydrogen bonding as an important factor. In FTIR study, the changes to the infrared bands, associated with the CO stretch coupled to the CC stretch and OH deformation, were significant and this further supports the strong hydrogen bonding of CMC to the solid surface. In addition, Langmuir modeling of the adsorption isotherm suggests hydrogen bonding to be a dominant force for polysaccharide adsorption since the adsorption free energy of this polymer was close to that for hydrogen bond formation. All of the above results suggest that the main driving forces for CMC adsorption on talc are a combination of electrostatic interaction and hydrogen bonding rather than hydrophobic force.  相似文献   

14.
The adsorption behavior of poly(ethylene oxide)-b-poly(L-lysine) (PEO(113)-b-PLL(10)) copolymer onto silica nanoparticles was investigated in phosphate buffer at pH 7.4 by means of dynamic light scattering, zeta potential, adsorption isotherms and microcalorimetry measurements. Both blocks have an affinity for the silica surface through hydrogen bonding (PEO and PLL) or electrostatic interactions (PLL). Competitive adsorption experiments from a mixture of PEO and PLL homopolymers evidenced greater interactions of PLL with silica while displacement experiments even revealed that free PLL chains could desorb PEO chains from the particle surface. This allowed us to better understand the adsorption mechanism of PEO-b-PLL copolymer at the silica surface. At low surface coverage, both blocks adsorbed in flat conformation leading to the flocculation of the particles as neither steric nor electrostatic forces could take place at the silica surface. The addition of a large excess of copolymer favoured the dispersion of flocs according to a presumed mechanism where PLL blocks of incoming copolymer chains preferentially adsorbed to the surface by displacing already adsorbed PEO blocks. The gradual addition of silica particles to an excess of PEO-b-PLL copolymer solution was the preferred method for particle coating as it favoured equilibrium conditions where the copolymer formed an anchor-buoy (PLL-PEO) structure with stabilizing properties at the silica-water interface.  相似文献   

15.
The interaction of water with extended defects such as mono- and diatomic steps at the MgO(100) surface is investigated through first-principles simulations, as a function of water coverage. At variance with flat MgO(100) terraces, water adsorption is always dissociative on mono- and diatomic steps, as well as on MgO(110) surfaces. In most of the equilibrium configurations, the oxygen of the hydroxyl groups is two- or fourfold coordinated, but single-coordinated OH groups can be stabilized at diatomic step edges. The structural properties of the hydroxyl groups are discussed as a function of their coordination numbers and mutual interactions, as well as the surface defect morphology. It is shown that characteristics of water adsorption are primarily driven by the coordination number of the surface acid-base pair where the dissociation occurs. However, the OH groups resulting from water dissociation are also considerably stabilized by the electrostatic interaction with coadsorbed protons. At low coverage such an interaction, considerably stronger than hydrogen bonding, practically hinders any proton diffusion away from its neighboring hydroxyl. The computed adsorption energies allow us to discuss the onset of water desorption from flat MgO(100) terraces, diatomic and monoatomic steps, and from Mg-O divacancy.  相似文献   

16.
Crosslinked N,N′-Diethylaminoethyl (DEAE) groups containing dextran microbeads have been used in human serum albumin (HSA) adsorption-desorption studies. For the HSA adsorption onto positively charged hydrophilic DEAE dextran microbeads, the adsorption kinetic was slightly decreased by the changing concentration of the protein solution. Adsorption kinetics and equilibrium isotherms for the adsorption of HSA on crosslinked DEAE dextran have been determined experimentally. Modeling of the adsorption processes on DEAE dextran microbeads were realized by applying different adsorption isotherms. Among the several isotherm equations, Langmuir and Freundlich adsorption isotherms were investigated depending on the two temperatures. These were only slightly dependent on the initial concentration of HSA but were considerably affected by the pH of the medium. The HSA adsorption capacity factor and the adsorption equilibrium constant were obtained and mathematical modeling of adsorption, adsorption rate constants and maximum adsorption were determined. Besides the adsorption mechanism, optimum ionic strength and optimum pH also were investigated. Desorption studies and desorption ratio of the system were determined for optimum medium conditions. It was been proved both experimentally and theoretically that human HSA is adsorbed by electrostatic attraction, ion-exchange, hydrophobic interaction and/or hydrogen bonding.  相似文献   

17.
Model surfaces representative of chromatographic stationary phases were developed by immobilising an homologous series (C2-C18) of n-alkylthiols, mixed monolayers of C4/C18 and thioalkanes with alcohol, carboxylic acid, amino and sulphonic acid terminal groups onto a flat, silver-coated glass surface using self-assembled monolayer (SAM) chemistry. The processes of adsorption and desorption of serum albumins onto the monolayer surfaces was monitored in real-time using surface plasmon resonance (SPR). Alkyl-terminated SAMs all showed a strong adsorption of bovine serum albumin which was largely independent of alkyl chain length, the ratio of mixed C4/C18 SAMs or the solution pH/ionic strength. The adsorption of human serum albumin to carboxylic and amine terminated SAMs was shown to be predominantly via non-electrostatic interactions (hydrophobic or hydrogen bonding). However, sulphonic acid terminated SAMs showed almost exclusively electrostatic interactions with human serum albumin. This preliminary work using self-assembled monolayer chemistry confirms the usefulness of well characterised SAMs surfaces for investigating protein adsorption and desorption onto/from model chromatography surfaces and gives some guidance for selecting appropriate functionalities to develop better surfaces for chromatography and electrophoresis.  相似文献   

18.
聚乙烯亚胺表面改性硅藻土及其对苯酚吸附特性的研究   总被引:3,自引:0,他引:3  
使用紫外吸收光度法研究了硅藻土对聚乙烯亚胺(PEI)的等温吸附;采用浸渍法,用PEI对硅藻土进行了表面改性;使用4-氨基安替比林光度法研究了经PEI表面改性的硅藻土对苯酚的捕集行为.研究结果表明,凭借强烈的静电相互作用,表面带负电荷的硅藻土粉体对阳离子性大分子PEI具有很强的吸附能力,等温吸附满足Freundlich吸附方程;经PEI表面改性后,硅藻土粉体表面的电性发生了根本性改变,且等电点由pH=2.0移至pH=10.5;在中性溶液中,改性粉体通过氢键作用与静电相互作用的协同,对水溶液中的苯酚会产生很强的捕集作用,饱和吸附量可达92 mg/g;在酸性溶液中改性粉体通过氢键相互作用,对水溶液中的苯酚产生一定的吸附作用,但由于PEI分子链高度的质子化,氮原子对苯酚的氢键相互作用很弱,吸附量很低.  相似文献   

19.
杨祖金  纪红兵 《催化学报》2014,35(4):590-598
以环氧氯丙烷作为交联溶剂合成和表征了纤维素功能化的β-环糊精,考察了这种超分子聚合物作为一种多相催化剂用于苯甲醛的合成的催化性能. 结果表明,该催化剂在温和的反应条件下具有较高的催化活性和选择性,容易恢复和重新利用,且活性没有大的损失. 进一步研究指出,β-环糊精聚合物中的b-环糊精能通过非极性共价键与肉桂醛形成主客包结物,此外,β-环糊精和纤维素的功能基团能与肉桂醛通过O-H…O的氢键形成多重氢键的相互作用,这种氢键的协同作用明显提高了催化剂的性能.  相似文献   

20.
CMC型高分子表面活性剂在固/液界面上的吸附   总被引:11,自引:1,他引:11  
在润湿、乳化、洗涤、分散等应用领域中,表面活性剂分子在界面上的吸附状态对性能有重要影响.另一方面,在化学驱油过程中,表面活性剂分子在氧化物矿物上的吸附是引起表面活性剂损失的主要原因,表面活性剂的损耗量大,将降低采收率及经济效益[1].高分子表面活性剂作为一种多功能的新型表面活性剂在许多领域有广阔的应用前景,但对其性能研究尚处于起步阶段,特别是结构复杂的高分子双亲性共聚物,在吸附、乳化等方面研究尚少报导.羧甲基纤维素系列高分子表面活性剂是采用独特的超声波辐照技术合成的嵌段型共聚物,具有优良的表/界面活性[2],可望用…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号