首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly convergent strategy for the synthesis of several derivatives of the lipid A of Rhizobium sin-1 has been developed. The synthetic derivatives are 2-aminogluconate 3 and 2-aminogluconolactone 4, both of which lack C-3 acylation. These derivatives were obtained by the preparation of disaccharides in which the two amino groups and the C-3' hydroxy group could be modified individually with acyl or beta-hydroxy fatty acyl groups. Detailed NMR spectroscopy and MS analysis of 3 and 4 revealed that, even under neutral conditions, the two compounds equilibrate. The synthetic compounds lack the proinflammatory effects of Escherichia coli lipopolysaccharide (LPS), as indicated by an absence of tumor necrosis factor production. Although 3 and 4 were able to antagonize E. coli LPS, they were significantly less potent than the synthetic compound 2, which is acylated at C-3, and R. sin-1 LPS; these results indicate that the beta-hydroxy fatty acyl group at C-3 contributes to the antagonistic properties of R. sin-1 LPS. Based on a comparison of the biological responses of the synthetic lipid A derivatives with those of the R. sin-1 LPS and lipid A, the 3-deoxy-D-manno-octulosonic moieties appear to be important for the optimal antagonization of enteric LPS-induced cytokine production.  相似文献   

2.
A highly convergent strategy for the synthesis of several derivatives of the lipid A of Rhizobium sin-1 has been developed. The approach employed the advanced intermediate 3-O-acetyl-6-O-(3-O-acetyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-d-glucopyrano-syl)-2-azido-4-O-benzyl-2-deoxy-1-thio-alpha-d-glucopyranoside (5), which is protected in such a way that the anomeric center, the C-2 and C-2' amino groups, and the C-3 and C-3' hydroxyls can be selectively functionalized. The synthetic strategy was used for the preparation of 2-deoxy-6-O-[2-deoxy-3-O-[(R)-3-hydroxy-hexadecanoyl]-2-[(R)-3-octacosanoyloxy-hexadecan]amido-beta-d-glucopyranosyl]-2-[(R)-3-hydroxy-hexadecan]amido-3-O-[(R)-3-hydroxy-hexadecanoyl]-alpha-d-glucopyranose (11) and 2-deoxy-6-O-[2-deoxy-3-O-[(R)-3-hydroxy-hexadecanoyl]-2-[(R)-3-octacosanoyloxy-hexadecan]amido-beta-d-glucopyranosyl]-2-[(R)-3-hydroxy-hexadecan]amido-3-O-[(R)-3-hydroxy-hexadecanoyl]-d-glucono-1,5-lactone (13), which contain an unusual octacosanoic acid moiety and differ in the oxidation state of the anomeric center. The results of biological studies indicate that 11 and 13 lack the proinflammatory effects of Escherichia coli lipopolysaccharides (LPS). Furthermore, 13 emulated the ability of heterogeneous R. sin-1 LPS to antagonize enteric LPS, providing evidence for the critical role of the gluconolactone moiety of R. sin-1 LPS in mediating this antagonistic effect. Compound 13 is the first example of a lipid A derivative that is devoid of phosphate but possesses antagonistic properties, making it an attractive lead compound for development of a drug to use in the treatment of Gram-negative septicemia.  相似文献   

3.
Differences in the pattern and chemical nature of fatty acids of lipid A of Neisseria meningitides lipooligosaccharides (LOS) and Escherichia coli lipopolysaccharides (LPS) may account for differences in inflammatory properties. Furthermore, there are indications that dimeric 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) moieties of LOS and LPS enhance biological activities. Heterogeneity in the structure of lipid A and possible contaminations with other inflammatory components have made it difficult to confirm these observations. To address these problems, a highly convergent approach for the synthesis of a lipid A derivative containing KDO has been developed, which relies on the ability to selectively remove or unmask in a sequential manner an isopropylidene acetal, 9-fluorenylmethoxycarbonyl (Fmoc), allyloxycarbonate (Alloc), azide, and thexyldimethylsilyl (TDS) ether. The strategy was employed for the synthesis of N. meningitidis lipid A containing KDO (3). Mouse macrophages were exposed to the synthetic compound and its parent LOS, E. coli lipid A (2), and a hybrid derivative (4) that has the asymmetrical acylation pattern of E. coli lipid A, but the shorter lipids of meningococcal lipid A. The resulting supernatants were examined for tumor necrosis factor alpha (TNF-alpha) and interferon beta (IFN-beta) production. The lipid A derivative containing KDO was much more active than lipid A alone and just slightly less active than its parent LOS, indicating that one KDO moiety is sufficient for full activity of TNF-alpha and IFN-beta induction. The lipid A of N. meningitidis was a significantly more potent inducer of TNF-alpha and IFN-beta than E. coli lipid A, which is due to a number of shorter fatty acids. The compounds did not demonstrate a bias towards a MyD88- or TRIF-dependent response.  相似文献   

4.
Abstract

Lipid A exhibits thp most important biological attributes of lipopolysaccharide (LPS) of gram-negative bacteria including endotoxicity, adjuvanticity and antitu-mor activity.′ The lipid A backbone, in general, is found to consist of a pyranosidic β 1,6-linked D-glucosamine disaccharide [β-D-GlcpN-(1→6)-α-D-GlcpN] phospho-rylated at 1 and 4′ positions and bearing two amide bound and two ester linked hydroxy and/or acyloxy fatty acids.2 However, the lipid A moiety of LPS from var-ious strains of the two gram-negative, photosynthetic bacteria, Rhodopseudomonas virtdia and Rhodopseudomonas palustrts, possesses 2,3-diamino-2,3-dideoxy-D-glucose as a constituent sugar. 3 This diamino sugar has been also reported to occur in LPS from several other bacterial specie4.5 Recently we found that the lipid X of Brucella abortus contains p(1→6)-linked 2,3-diamino-2,3-dideoxy-D- glucopyranose disaccharide moiety with a phosphate group at the 4′ position and amide bound acyloxy and hydroxy fatty acids.6  相似文献   

5.
The lipid A moiety of lipopolysaccharides (LPS) initiates innate immune responses by interacting with Toll-like receptor 4 (TLR4), which results in the production of a wide range of cytokines. Derivatives of lipid A show potential for use as immuno-modulators for the treatment of a wide range of diseases and as adjuvants for vaccinations. Development to these ends requires a detailed knowledge of patterns of cytokines induced by a wide range of derivatives. This information is difficult to obtain by using isolated compounds due to structural heterogeneity and possible contaminations with other inflammatory components. To address this problem, we have developed a synthetic approach that provides easy access to a wide range of lipid A's by employing a common disaccharide building block functionalized with a versatile set of protecting groups. The strategy was employed for the preparation of lipid A's derived from E. coli and S. typhimurium. Mouse macrophages were exposed to the synthetic compounds and E. coli 055:B5 LPS, and the resulting supernatants were examined for tumor necrosis factor alpha (TNF-alpha), interferon beta (IFN-beta), interleukin 6 (IL-6), interferon-inducible protein 10 (IP-10), RANTES, and IL-1beta. It was found that for each compound, the potencies (EC50 values) for the various cytokines differed by as much as 100-fold. These differences did not follow a bias toward a MyD88- or TRIF-dependent response. Instead, it was established that the observed differences in potencies of secreted TNF-alpha and IL-1beta were due to differences in the processing of respective pro-proteins. Examination of the efficacies (maximum responses) of the various cytokines showed that each synthetic compound and E. coli 055:B5 LPS induced similar efficacies for the production of IFN-beta and IP-10. However, lipid A's 1-4 gave lower efficacies for the production of RANTES and IL-6 as compared to LPS. Collectively, the presented results demonstrate that cytokine secretion induced by LPS and lipid A is complex, which can be exploited for the development of immuno-modulating therapies.  相似文献   

6.
Santhanam B  Boons GJ 《Organic letters》2004,6(19):3333-3336
[structure: see text] A general synthetic strategy for long-chain omega-1 hydroxy fatty acids has been developed, which employs as a key reaction step a cross metathesis between omega-unsaturated ester and 3-butene-2-ol. The resulting lipids were used for the preparation of lipid A derivatives of Rhizobium sin-1, which have the ability to inhibit the E. coli LPS-dependent synthesis of tumor necrosis factor by human monocytes.  相似文献   

7.
Fluorescence- and biotin-labeled lipid A analogues were synthesized for the investigation of bacterial lipopolysaccharide (LPS)/lipid A recognition in the innate immune system. For the introduction of the labeling moiety, a hydrophilic glutaryl-glucose linker was used for maintaining the bioactivity and also for preventing self-aggregation, which causes quenching of the fluorescence. We also observed the biological activity of the labeled compounds.  相似文献   

8.
Oleoylethanolamide (OEA) is known to potentially have beneficial biological effects on weight management by controlling food intake and activating lipid catabolism. In biological fluids, OEA and other endogenously biosynthesized fatty acid ethanolamides are usually analyzed by liquid chromatography-mass spectrometry (LC-MS). The present study provides analytical method to routinely assess the quality of OEA prepared for biological studies by gas-liquid chromatography (GLC). The preparation of OEA for biomedical studies can be performed by N-acylation of oleic acid/esters or using oleoyl chloride. In the present study, OEA was prepared by transamidation of triolein. The analysis of the synthesized OEA has been performed by gas-liquid chromatography of its trimethylsilyl ether (TMS) derivatives. Free OEA cannot be analyzed as such because dehydration of the ethanolamide moiety promptly happens in the GLC injection. This thermal degradation reaction gives rise to the formation of an oxazoline derivative. The TMS moiety prevents the reaction, and the structure of the formed derivative was assessed by mass spectrometry. We show here that OEA prepared for biological studies can be routinely analyzed by GLC after TMS derivative preparation.  相似文献   

9.
The most abundant and potent natural products having a broad spectrum of biological activity against various pests are terpenoids, especially monoterpenoids. The chemical modification of natural monoterpenoids has been reported to result in modified biological activity. The present work emphasizes the structural modification of carvacrol, a phenolic monoterpenoid, through the synthesis of different ether and ester derivatives that are useful for structure–activity relationship studies to exploit the potent molecules. The carvacrol was reacted with alkyl halides and acid chlorides under microwaves using solid supports such as silica gel, alumina, and fly ash to give ethers and esters, respectively. The synthesis of dimeric ether and ester compounds using dihalides and acid dichlorides was conducted with novel reactions. Additional features of the methodology include very fast reactions, higher yields and purities of the products, and an ecofriendly approach.  相似文献   

10.
Fe2+-dependent lipid peroxidation in phosphatidylcholine (PC) liposomes, assessed by thiobarbituric acid-reactive substances (TBARS) production, was stimulated in the presence of Fe3+ in a concentration-dependent manner. The rates of nitroblue tetrazolium (NBT) reduction and Fe2+ oxidation (Fe2+ disappearance and Fe3+ formation) were also enhanced by the addition of Fe3+ to the reaction mixture, and there is a good linear relationship between these parameters. These results suggest that the facilitation of reactive oxygen species (ROS) production via Fe2+ oxidation is closely related to the onset of the stimulatory effect of Fe3+ on Fe2+-dependent lipid peroxidation. On the other hand, results using the liposomes containing various concentrations of endogenous lipid hydroperoxides (LOOH) indicated that endogenous LOOH is not directly involved in the onset of the Fe3+ stimulatory effect on Fe2+-dependent TBARS production and ROS production. This hypothesis was further confirmed by the evidence that Fe2+-dependent ROS production and Fe2+ oxidation of dipalmitoylphosphatidylcholine liposomes were also stimulated by the addition of Fe3+. The results with several antioxidants and radical scavengers suggested that ROS related to Fe2+-dependent lipid peroxidation and its stimulation by Fe3+ are ferrous-oxygen complexes rather than superoxide anion, hydrogen peroxide and hydroxyl radicals. Based on these results, we proposed a possible mechanism for the onset of the Fe3+ stimulation in Fe2+-dependent lipid peroxidation.  相似文献   

11.
The structural variations in the rough-type endotoxins [lipopolysaccharides (LPSs)] of Shigella sonnei mutant strains (S. sonnei phase II-4303, R41, 562H and 4350) were investigated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem MS. A series of S. sonnei mutants had previously been the subject of analytical studies on the biosynthesis of heptose components in the core oligosaccharide region of LPSs. This study gives a complete overview on the structures of the full core and lipid A of S. sonnei mutant strains by MS. We found that the LPSs of the isogenic rough mutants were formed in a step-like manner containing 0:1:2:3 heptose in the deep core region of 4350, 562H, R41 and 4303, respectively, and the longest LPS from the mutant S. sonnei 4303 contained also five hexoses. The structural variations in the lipid A moiety and in the oligosaccharide part of the intact LPS were followed by MALDI-TOF-MS/MS. For the dissolution and the ionization of the samples, 2,5-dihydroxybenzoic acid in citric acid solution was applied as matrix. The detailed evaluation of the mass spectra indicates heterogeneity in the lipid part due to the differences in the phosphate and fatty acid composition.  相似文献   

12.
Information processing and cell signalling in biological systems relies on passing chemical signals across lipid bilayer membranes, but examples of synthetic systems that can achieve this process are rare. A synthetic transducer has been developed that triggers catalytic hydrolysis of an ester substrate inside lipid vesicles in response to addition of metal ions to the external vesicle solution. The output signal generated in the internal compartment of the vesicles is produced by binding of a metal ion cofactor to a head group on the transducer to form a catalytically competent complex. The mechanism of signal transduction is based on transport of the metal ion cofactor across the bilayer by the transducer, and the system can be reversibly switched between on and off states by adding cadmium(ii) and ethylene diamine tetracarboxylic acid input signals respectively. The transducer is also equipped with a hydrazide moiety, which allows modulation of activity through covalent conjugation with aldehydes. Conjugation with a sugar derivative abolished activity, because the resulting hydrazone is too polar to cross the bilayer, whereas conjugation with a pyridine derivative increased activity. Coupling transport with catalysis provides a straightforward mechanism for generating complex systems using simple components.

Synthetic transducers transport externally added metal ion cofactors across the lipid bilayer membrane of vesicles to trigger catalysis of ester hydrolysis in the inner compartment. Signal transduction activity is modulated by hydrazone formation.  相似文献   

13.
For the study of biological signal transduction, access to correctly lipidated proteins is of utmost importance. Furthermore, access to bioconjugates that embody the correct structure of the protein but that may additionally carry different lipid groups or labels (i.e., fluorescent tags) by which the protein can be traced in biological systems, could provide invaluable reagents. We report here of the development of techniques for the synthesis of a series of modified Ras proteins. These modified Ras proteins carry a number of different, natural and non-natural lipid residues, and the process was extended to also provide access to a number of fluorescently labeled derivatives. The maleimide group provided the key to link chemically synthesized lipopeptide molecules in a specific and efficient manner to a truncated form of the H-Ras protein. Furthermore, a preliminary study on the biological activity of the natural Ras protein derivative (containing the normal farnesyl and palmitoyl lipid residues) has shown full biological activity. This result highlights the usefulness of these compounds as invaluable tools for the study of Ras signal transduction processes and the plasma membrane localization of the Ras proteins.  相似文献   

14.
We describe herein the synthesis of a new analogue of the GM3-lactone containing a cyclic ether moiety. The ether moiety was chosen as a replacement for the regular lactone group since it shows high resemblance with the lactone and is completely stable under biological conditions. The cyclic ether moiety was formed by reduction of the corresponding lactone to give the lactol followed by formation of the S,O-hemiacetal and hydrogenation. In addition, we have prepared haptens with a hexanoic acid moiety, which can be used for the preparation of poly- and monoclonal antibodies after binding to BSA or KLH. This is the first example of an analogue of the GM3-lactone which is stable under hydrolytic conditions in vitro and probably also in vivo. Reaction of lactone 18 with a Red/Al derivative led to the lactol 19 which was transformed into the S,O-hemiacetal 20 using 2,2'-bis(pyridinium) disulfide in quantitative yield. Hydrogenation with Raney Nickel gave 21 from which after removal of the protecting group at C-1a the trichloroacetimidate 25 was prepared. Reaction with azidosphingosine to give 26 followed by reduction of the azido group with NHEt3+[(PhS)3Sn], acylation with stearic acid using EDC and removal of the protecting groups led to the desired ether analogue of GM3 lactone 4. In addition the trichloroacetimidate 25 was glycosidated with 6-hydroxyhexanoic acid methyl ester, which was deprotected to give 29. The compound will be used for the preparation of poly- and monoclonal antibodies after coupling with BSA and KLH.  相似文献   

15.
He X  Shu J  Xu L  Lu C  Lu A 《Molecules (Basel, Switzerland)》2012,17(3):3155-3164
Astragalus polysaccharides (APS), one of main bioactive components in Astragalus membranaceus Bunge, has been reported to possess anti-inflammatory activities, but the molecular mechanisms behind this activity are largely unknown. This study aimed to investigate expression of inflammatory cytokines and the MAPK/NF-κB pathway in human THP-1 macrophages induced by lipopolysaccharide (LPS). The results showed that the concentrations of TNF-a and IL-1β released from LPS stimulated THP-1 cells increased significantly compared to control (p < 0.01). After treatment with APS, the TNF-a and IL-1β levels were significantly lower than those in the LPS group (p < 0.05). The mRNA expression of TNF-a and IL-1β were also inhibited. Mechanistic studies indicated that APS strongly suppressed NF-κB activation and down-regulated the phosphorylation of ERK and JNK, which are important signaling pathways involved in the production of TNF-a and IL-1β, demonstrating that APS could suppress the production of TNF-a and IL-1β by LPS stimulated macrophages by inhibiting NF-κB activation and ERK and JNK phosphorylation.  相似文献   

16.
Echinacea preparations are widely used herbal medicines for the prevention and treatment of colds and minor infections. There is little evidence for the individual components in Echinacea that contribute to immune regulatory activity. Activity of an ethanolic Echinacea extract and several constituents, including cichoric acid, have been examined using three in vitro measures of macrophage immune function - NF-kappaB, TNF- alpha and nitric oxide (NO). In cultured macrophages, all components except the monoene alkylamide (AA1) decreased lipopolysaccharide (LPS) stimulated NF-kappaB levels. 0.2 microg/ml cichoric acid and 2.0 microg/mL Echinacea Premium Liquid (EPL) and EPL alkylamide fraction (EPL AA) were found to significantly decrease TNF-alpha production under LPS stimulated conditions in macrophages. In macrophages, only the alkylamide mixture isolated from the ethanolic Echinacea extract decreased LPS stimulated NO production. In this study, the mixture of alkylamides in the Echinacea ethanolic liquid extract did not respond in the same manner in the assays as the individual alkylamides investigated. While cichoric acid has been shown to affect NF-kappaB, TNF-alpha and NO levels, it is unlikely to be relevant in the Echinacea alterations of the immune response in vivo due to its non- bioavailability - i.e. no demonstrated absorption across the intestinal barrier and no detectable levels in plasma. These results demonstrate that Echinacea is an effective modulator of macrophage immune responses in vitro.  相似文献   

17.
Endotoxin (lipopolysaccharide, LPS) is, in general, composed of two moieties: a hydrophilic polysaccharide linked to a hydrophobic lipid A terminal unit and forms a major surface component of gram-negative bacteria. The structural features of LPS moieties play a role in pathogenesis and also involve immunogenicity and diagnostic serology. The major toxic factor of LPS resides in the lipid A moiety, anchored in the outer layer of the bacterium, and its relative biological activity is critically related to fine structural features within the molecule. In establishing relationships between structural features and biological activities of LPS it is of the utmost importance to develop new analytical methods that can be applied to the complete unambiguous characterization of a specific LPS molecule. Herein is presented a practical rapid and sensitive analytical procedure for the mass spectral screening of LPS using triethylamine citrate as an agent for both disaggregation and mild hydrolysis of LPS. It provides improved matrix-assisted laser desorption/ionization (MALDI) mass spectra and, in particular, affords the identification of fragments retaining labile substituents present in the native macromolecular LPS structures. The methods were developed and applied using purified LPS of Escherichia coli and Salmonella enterica, as well as more complex LPS of Actnobacillus pleuropneumoniae.  相似文献   

18.
Gram-negative bacterial cell surface component lipopolysaccharide (LPS) and its active principle, lipid A, exhibit immunostimulatory effects and have the potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, LPS and lipid A must be structurally modified to minimize their toxic effects while maintaining their adjuvant effect for application as vaccine adjuvants. In the field of chemical ecology research, various biological phenomena occurring among organisms are considered molecular interactions. Recently, the hypothesis has been proposed that LPS and lipid A mediate bacterial–host chemical ecology to regulate various host biological phenomena, mainly immunity. Parasitic and symbiotic bacteria inhabiting the host are predicted to possess low-toxicity immunomodulators due to the chemical structural changes of their LPS caused by co-evolution with the host. Studies on the chemical synthesis and functional evaluation of their lipid As have been developed to test this hypothesis and to apply them to low-toxicity and safe adjuvants.  相似文献   

19.
Helicobacter pylori is a common cause of gastroduodenal inflammatory diseases such as chronic gastritis and peptic ulcers and also an important factor in gastric carcinogenesis. Recent reports have demonstrated that bacterial inflammatory processes, such as stimulation with H. pylori lipopolysaccharide (LPS), initiate atherosclerosis. To establish the structures responsible for the inflammatory response of H. pylori LPS, we synthesized various kinds of lipid A structures (i.e., triacylated lipid A and Kdo‐lipid A compounds), with or without the ethanolamine group at the 1‐phosphate moiety, by a new divergent synthetic route. Stereoselective α‐glycosylation of Kdo N‐phenyltrifluoroacetimidate was achieved by use of microfluidic methods. None of the lipid A and Kdo‐lipid A compounds were a strong inducer of IL‐1β, IL‐6, or IL‐8, suggesting that H. pylori LPS is unable to induce acute inflammation. In fact, the lipid A and Kdo‐lipid A compounds showed antagonistic activity against cytokine induction by E. coli LPS, except for the lipid A compound with the ethanolamine group, which showed very weak agonistic activity. On the other hand, these H. pylori LPS partial structures showed potent IL‐18‐ and IL‐12‐inducing activities. IL‐18 has been shown to correlate with chronic inflammation, so H. pylori LPS might be implicated in the chronic inflammatory responses induced by H. pylori. These results also indicated that H. pylori LPS can modulate the immune response: NF‐κB activation through hTLR4/MD‐2 was suppressed, whereas production of IL‐18 and IL‐12 was promoted.  相似文献   

20.
Francisella tularensis , which is a Gram negative bacterium that causes tularemia, has been classified by the Center for Disease Control and Prevention (CDC) as a category A bioweapon. The development of vaccines, immunotherapeutics, and diagnostics for F. tularensis requires a detailed knowledge of the saccharide structures that can be recognized by protective antibodies. We have synthesized the inner core region of the lipopolysaccharide (LPS) of F. tularensis to probe antigenic responses elicited by a live and subunit vaccine. The successful preparation of the target compound relied on the use of a disaccharide which was modified by the orthogonal protecting groups diethylisopropylsilyl (DEIPS), 2-naphthylmethyl (Nap), allyl ether (All), and levulinoyl (Lev) ester. The ability to remove the protecting groups in different orders made it possible to establish the optimal glycosylations sequence to prepare a highly crowded 1,2,3-cis configured branching point. A variety of different methods were exploited to control anomeric selectivities of the glycosylations. A comparison of the (1)H NMR spectra of isolated material and the synthetic derivative confirmed the reported structural assignment of the inner core oligosaccharide of F. tularensis . The observation that immunizations with LPS lead to antibody responses to the inner core saccharides provides an impetus to further explore this compound as a vaccine candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号