首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of additives on the quasi-Fermi levels (QFL) of TiO(2) films in dye-sensitized solar cells (DSCs) were investigated by a direct method. We observed that the values of QFL of TiO(2) at short circuit and open circuit are different and found for the first time the linear relationships between QFL shifts at short circuit and open circuit induced by 4-tert-butylpyridine (TBP), and that the slopes of the lines were significantly influenced by the nature of cations in the electrolyte. Different QFL shifts at short circuit and open circuit were observed in the presence of TBA(+). These quantitative results suggest that the QFL of TiO(2) films at short circuit and open circuit can be adjusted separately by developing suitable additives and cations, which will be helpful to further improve the efficiency of DSCs.  相似文献   

2.
A novel type of dye-sensitized cell (DSC) with a passivated titanium sensor electrode located on top of the nanocrystalline titanium dioxide layer has been used to study the temperature dependence of the electron quasi-Fermi level relative to the I3-/I- redox-Fermi level under short circuit conditions. The results show that the Fermi level decreases with increasing temperature (-1.76 meV K(-1)) as predicted for diffusive electron transport at short circuit. A smaller temperature dependence (-0.25 meV K(-1)) of the position of the TiO2 conduction band relative to the I3-/I- redox-Fermi level was deduced from the shifts in the trap distribution. An expression for the temperature dependence of the open circuit voltage, U(photo), has been derived. The experimentally observed temperature dependence of U(photo) gave values of the activation energy (0.25 eV) and preexponential factor (10(8) s(-1)) for the transfer of electrons from the conduction band of the nanocrystalline TiO2 to triiodide ions.  相似文献   

3.
以二氧化钛(TiO2)纳米粉(P25)为原料,把它研磨成胶状,用涂敷法制得TiO2纳米多孔膜,并组装成太阳能电池,用100W氙灯作为模拟太阳光,对电池进行光电性能测试.根据电池的短路电流(Isc)、开路电压(Voc)和填充因子(ff)等指标来反映电池的性能.研究表明,分散剂乙酰丙酮、OP乳化剂、研磨时间和热处理后的保温时间长短对TiO2膜的性能均有很大的影响.其结果是,乙酰丙酮0.15mL、OP乳化剂0.10mL、研磨时间1h和保温时间0.5h时,TiO2膜的光电性能较好,IscVocff分别为8.85mA、567mV和0.445.并用XRD和比表面及孔隙分析仪对TiO2膜进行了表征.  相似文献   

4.
Electron transport and recombination in dye-sensitized nanocrystalline solar cells (DSCs) are strongly influenced by the presence of trapping states in the titanium dioxide particles, and collection of photoinjected electrons at the contact can require times ranging from milliseconds to seconds, depending on the illumination intensity. A direct method of determining the density and energetic distribution of the trapping states responsible for slowing electron transport has been developed. It involves extraction of trapped electrons by switching the cell from an open circuit to a short circuit after a period of illumination. An advantage of this charge extraction method is that it is less sensitive than other methods to shunting of the DSC by electron transfer at the conducting glass substrate. Results derived from charge extraction measurements on DSCs (with and without compact TiO(2) blocking layers) are compared with those obtained by analysis of the open circuit photovoltage decay.  相似文献   

5.
Resonance Raman spectra are reported for Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 (commonly called "N3") in ethanol solution and adsorbed on nanoparticulate colloidal TiO2 in ethanol (EtOH) and in acetonitrile (ACN), at wavelengths within the visible absorption band of the dye. Raman cross sections of free N3 in EtOH are found to be similar to those of N3 adsorbed on colloidal TiO2 in EtOH, and are generally lower than those of N3 on TiO2 in ACN. Strong electronic coupling mediated by surface states results in red-shifted absorption spectra and enhanced Raman signals for N3 adsorbed on nanocolloidal TiO2 in ACN compared to EtOH. In contrast, the absorption spectrum of N3 on nanocrystalline TiO2 in contact with solvent is similar for ACN and EtOH. Wavelength-dependent depolarization ratios for N3 Raman bands of both free and adsorbed N3 reveal resonance enhancement via two or more excited electronic states. Luminescence spectra of N3 adsorbed on nanocrystalline films of TiO2 and ZrO2 in contact with solvent reveal that the quantum yield of electron injection phi(ET) into TiO2 decreases in the order ACN > EtOH > DMSO. Dye-sensitized solar cells were fabricated with N3 adsorbed on nanocrystalline films of TiO2 in contact with ACN, EtOH, and DMSO solutions containing LiI/LiI3 electrolyte. Photoconversion efficiencies eta were found to be 2.6% in ACN, 1.3% in DMSO, and 0.84% in EtOH. Higher short circuit currents are found in cells using ACN, while the maximum voltage is found to be largest in DMSO. It is concluded that the increased photocurrent and quantum yield of interfacial electron transfer in acetonitrile as compared to ethanol and DMSO is primarily the result of faster electron injection of N3 when adsorbed on TiO2 in the presence of ACN as opposed to EtOH or DMSO.  相似文献   

6.
菁类染料敏化的固态纳米TiO2光电化学电池   总被引:12,自引:0,他引:12  
染料敏化TiO2光电化学电池具有较高的能量转换效率,价格仅为传统单晶硅太阳能电池的1/10,成为半导体光电化学领域的研究热点^[1-4]。但该类电池内的电解液可流动,造成电池密封困难,限制其实用化。针对这一问题,采用无机p-型半导体材料^[5,6]和高分子导体等电解液替代物组装固态光电化学电池成为该领域的新的研究方向^[7-9]。我们^[10]用凝胶网络高分子电解质组装成固态电池,取得了令人满意的结果。电池中原使用的敏化剂是顺二硫氰根-双(2,2′-联吡啶-4,4′-二羧酸)合钌(Ⅱ)(cis-bis)(thiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(Ⅱ),其价格昂贵,合成路线复杂。本文用自合成的、价格低廉的纯有机不对称菁类染料(Cyanine dye,以下简称为CD)敏化TiO2电极和基于聚氧乙烯(PEO)的凝胶网络高分子电解质组装成固态电池,并研究了所得固态电池的光电转换性能。  相似文献   

7.
In dye-sensitized nanocrystalline solar cells (DSC), the transfer of electrons from the conducting glass substrate to triiodide ions in solution is an important loss mechanism that can be suppressed by using thin compact blocking layers of TiO(2). Whereas back-reaction at the substrate is relatively unimportant under short circuit conditions, it must be taken into account at the maximum power point or at open circuit. The influence of the back-reaction on open circuit photovoltage decay measurements and on intensity modulated photovoltage (IMVS) measurements has been studied by model simulations and by experimental measurements. The simulations demonstrate that reliable information about DSC properties such as trapping distributions can only be derived from transient or periodic photovoltage responses if the back-reaction is suppressed by the use of suitable blocking layers.  相似文献   

8.
9.
Solar cells based on swift self-assembled sensitizer bis(tetrabutylammonium)-cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenium(II) (N719) on double layers of 12 + 4 microm thick nanocrystalline TiO2 films exhibit the incident monochromatic photon-to-current conversion efficiency (IPCE) 90% and show a short circuit current density of 17 mA cm(-2), 750 mV open circuit potential and 0.72 fill factor yielding power conversion efficiencies over 9.18% under AM 1.5 sun. For the first time highest power conversion efficiencies are obtained for dye sensitized solar cells using a swift self-assembled procedure.  相似文献   

10.
Elongated dye sensitized solar cells with a thickness gradient of the nanoporous TiO2 front electrode were used to assess the impact of the layer thickness on photocurrent and degradation. The photocurrent efficiency passes through a maximum (in our case at about 12 microm). Interestingly, the degradation rate also strongly depends on the layer thickness and is about 3 times faster for a 15-microm cell (in comparison with a 1-microm cell). To explain these nonanticipated results, a model to describe the I3(-)/I- concentration within a typical dye sensitized solar cell under steady-state conditions was derived. It includes the nanoporous TiO2 layer and a bulk solution with their different mobilities for the electrolyte species. Using typical parameters from the literature, it turned out that, despite the fact that the initial I- concentration is about 1 order of magnitude larger and the assumed diffusion coefficient is 1.3 times higher, the depletion of the I- concentration at the TiO2/FTO front contact happens to be in the same range as the depletion of the I3(-) concentration at the back contact. This stresses the importance of iodide in nanoporous environments for both the maximum attainable photocurrent and its role in the regeneration of the oxidized dye. Enhanced degradation rates might be related to poor iodide supply, since the oxidized state cannot be regenerated efficiently.  相似文献   

11.
Electrochemical impedance spectroscopy (EIS) and transient voltage decay measurements are applied to compare the performance of dye sensitized solar cells (DSCs) using organic electrolytes, ionic liquids and organic‐hole conductors as hole transport materials (HTM). Nano‐crystalline titania films sensitized by the same heteroleptic ruthenium complex NaRu(4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridyl)(NCS)2 , coded Z‐907Na are employed as working electrodes. The influence of the nature of the HTM on the photovoltaic figures of merit, that is, the open circuit voltage, short circuit photocurrent and fill factor is evaluated. In order to derive the electron lifetime, as well as the electron diffusion coefficient and charge collection efficiency, EIS measurements are performed in the dark and under illumination corresponding to realistic photovoltaic operating conditions of these mesoscopic solar cells. A theoretical model is established to interpret the frequency response off the impedance under open circuit conditions, which is conceptually similar to photovoltage transient decay measurements. Important information on factors that govern the dynamics of electron transport within the nanocrystalline TiO2 film and charge recombination across the dye sensitized heterojunction is obtained.  相似文献   

12.
We have synthesized and characterized four organic dyes ( 9 , 10 , H1 , H2 ) based on a 3,6‐disubstituted carbazole donor as sensitizers in dye‐sensitized solar cells. These dyes have high molar extinction coefficients and energy levels suitable for electron transfer from an electrolyte to nanocrystalline TiO2 particles. Under standard air mass 1.5 global (AM 1.5 G) solar irradiation, a device using dye H4 exhibits a short‐circuit current density (Jsc) of 13.7 mA cm?2, an open‐circuit voltage (Voc) of 0.68 V, a fill factor (FF) of 0.70, and a calculated efficiency of 6.52 %. This performance is comparable to that of a reference cell based on N719 (7.30 %) under the same conditions. After 1000 hours of visible‐light soaking at 60 °C, the overall efficiency remained at 95 % of the initial value.  相似文献   

13.
采用电化学阻抗谱(EIS)研究了染料敏化太阳电池(DSC)中由导电玻璃、 纳米多孔TiO2薄膜和电解质构成的多相复杂接触界面的电子转移机制和动力学过程. 通过沉积聚合物薄膜简化多相接触界面结构, 根据接触界面结构和电子转移途径的变化, 分析了不同偏压下多相接触界面电子转移机制, 构建与之对应的等效电路, 获得了DSC内部各个主要接触界面的电子转移动力学常数. 结果表明, 通过外加偏压的控制和多相接触界面结构的简化, 可以区别分析多相复杂接触界面电子转移机制与动力学过程.  相似文献   

14.
N,N′-对羧苄基吲哚三菁敏化纳米TiO2电极的研究   总被引:1,自引:0,他引:1  
应用光电化学方法研究了N, N′-对羧苄基吲哚三菁(Cy5)染料敏化TiO2纳米晶电极的光电化学行为,优化了敏化的条件.结合Cy5的循环伏安曲线和光吸收阈值,初步确定Cy5电子基态和激发态能级位置.结果表明,Cy5电子激发态能级位置能与TiO2纳米粒子导带边位置相匹配,因而使用该染料敏化可以显著提高TiO2纳米晶的光电流,使TiO2纳米晶电极吸收波长由紫外光区红移至可见光区和近红外区,光电转换效率得到明显改善,在膜厚为6.5μm、敏化时间为6 h的条件下IPCE值(incident photo-to-electricity conversion efficiency)最高可达46.4%,总的光电转换效率η为1.70%.  相似文献   

15.
Dye solar cells have been investigated by charge carrier extraction under short and open circuit conditions and an illumination intensity equivalent to 1 sun (AM 1.5). Under short circuit conditions, a surprisingly high amount of charge carriers stored in the nanoporous TiO2 network has been observed. A theoretical model was developed to describe the charge transport in the nanoporous TiO2 network of a dye solar cell, and the spatial distribution of the electron concentration was calculated. These results were compared with the experimental data of charge carriers stored in the TiO2 network under short and open circuit conditions. We were able to conclude that under short circuit conditions, the electrochemical potential of the electrons in the region far from the electrode is up to 550-570 meV higher than that of the electrons at the front electrode. This internal voltage is the driving force across the nanoporous TiO2 film under short circuit conditions.  相似文献   

16.
Two novel heteroleptic sensitizers, Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2-bipyridine)(NCS)2 and Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-methoxystyryl)-2,2'-bipyridine) (NCS)2, coded as K-19 and K-73, respectively, have been synthesized and characterized by 1H NMR, FTIR, UV-vis absorption, and emission spectroscopy and excited-state lifetime and spectroelectrochemical measurements. The introduction of the alkoxystyryl group extends the conjugation of the bipyridine donor ligand increasing markedly their molar extinction coefficient and solar light harvesting capacity. The dynamics of photoinduced charge separation following electronic excitation of the K-19 dye was scrutinized by time-resolved laser spectroscopy. The electron transfer from K-19 to the conduction band of TiO2 is completed within 20 fs while charge recombination has a half-life time of 800 s. The high extinction coefficients of these sensitizers enable realization of a new generation of a thin film dye sensitized solar cell (DSC) yielding high conversion efficiency at full sunlight even with viscous electrolytes based on ionic liquids or nonvolatile solvents. An unprecedented yield of over 9% was obtained under standard reporting conditions (simulated global air mass 1.5 sunlight at 1000 W/m2 intensity) when the K-73 sensitizer was combined with a nonvolatile "robust" electrolyte. The K-19 dye gave a conversion yield of 7.1% when used in conjunction with the binary ionic liquid electrolyte. These devices exhibit excellent stability under light soaking at 60 degrees C. The effect of the mesoscopic TiO2 film thickness on photovoltaic performance has been analyzed by electrochemical impedance spectroscopy (EIS).  相似文献   

17.
采用曙红与香豆素混合的方法,配制成敏化剂修饰纳米晶薄膜.实验结果证明,这种共敏化的方法可以在可见光范围内有效提高电池的吸光度,使得电池的性能比单独使用曙红敏化有了大幅度提高.在模拟太阳光下,曙红与香豆素共敏化的电池的开路电压达到了532 mV,短路电流达到了0.1125 mA/cm2.  相似文献   

18.
We have designed and synthesized a new thiocyanate-free sensitizer coded as SPS-01 and used it as the sensitizer in a TiO(2) based nanocrystalline dye-sensitized solar cell (DSSC). SPS-01 exhibits strong visible absorption properties with maximum peak around at 532 nm. The overall power conversion efficiency (PCE) of a DSSC sensitized with SPS-01 (7.96%) is higher than that of N719 (7.30%) under identical experimental conditions. This high PCE is attributed mainly due to the improvement in the short circuit current.  相似文献   

19.
TiO2 nanotubes (TNTs) with large aspect ratio and large specific surface area were prepared from P25 (Nippon Aerosil) and applied to dye-sensitized titanium dioxide solar cells (DSSCs). Optimization of fabrication conditions, i.e., pH of the starting paste, sintering temperature for the TiO2 electrodes, electrolyte compositions of DSSCs gave the high conversion efficiency with improved open circuit voltage (V(oc)) and fill factor (FF) when compared to DSSCs made of P25. The evaluation of dye adsorption and the photo-injected electron transport such as electron diffusion coefficient (D) and electron lifetime (tau) in TNTs electrodes revealed that the higher efficiency resulted from increase of electron density with keeping much longer tau in TNTs electrodes than in P25 electrodes.  相似文献   

20.
Electrochemical impedance spectroscopy (EIS) has been performed to investigate electronic and ionic processes in dye-sensitized solar cells (DSC). A theoretical model has been elaborated, to interpret the frequency response of the device. The high-frequency feature is attributed to the charge transfer at the counter electrode while the response in the intermediate-frequency region is associated with the electron transport in the mesoscopic TiO2 film and the back reaction at the TiO2/electrolyte interface. The low-frequency region reflects the diffusion in the electrolyte. Using an appropriate equivalent circuit, the electron transport rate and electron lifetime in the mesoscopic film have been derived, which agree with the values derived from transient photocurrent and photovoltage measurements. The EIS measurements show that DSC performance variations under prolonged thermal aging result mainly from the decrease in the lifetime of the conduction band electron in the TiO2 film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号