首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasound changes its intensity and speed when propagating through a liquid or a suspension containing particles. In addition it generates a weak electric signal by altering the motion of ions and charged particles. Hence acoustic and electroacoustic measurements provide information about the properties of suspended particles and molecules. Here we present both acoustic and electroacoustic results on blood suspensions and protein solutions, relevant to life sciences. For blood cells a strong increase in acoustic attenuation with volume fraction is found, from which the speed of sound in an erythrocyte is found to be about 1900 m/s, assuming the attenuation is due to scattering only. A similar value of 1700 m/s is found from the increase in sound speed of the dispersion with concentration. Electroacoustic measurements on bovine serum albumin (BSA) yield a charge of about seven elementary charges per BSA molecule. These results show the power and usefulness of acoustic and electroacoustic measurement techniques for biological systems.  相似文献   

2.
Fractals are aggregates of primary particles organized with a certain symmetry defined essentially by one parameter-a fractal dimension. We have developed a model for the interpretation of acoustic data with respect to particle structure in aggregated fractal particles. We apply this model to the characterization of various properties of a fumed silica, being but one example of a fractal structure. Importantly, our model assumes that there is no liquid flow within the aggregates (no advection). For fractal dimensions of less than 2.5, we find that the size and density of aggregates, computed from the measured acoustic attenuation spectra, are quite independent of the assumed fractal dimension. This aggregate size agrees well with light-scattering measurements. We applied this model to the interpretation of electroacoustic data as well. A combination of electroacoustic and conductivity measurements yields sufficient data for comparing the fractal model of the particle organization with a simple model of the separate primary particles. Conductivity measurements provide information on particle surface conductivity reflected in terms of the Dukhin number (Du). Supporting information for the zeta potential and Du can also be provided by electroacoustic measurements assuming thin double-layer theory. In comparing values of Du from these two measurements, we find that the model of separate solid particles provides much more consistent results than a fractal model with zero advection. To explain this, we first need to explain an apparent contradiction in the acoustic and electroacoustic data for porous particles. Although not important for interpreting acoustic data, advection within the aggregate does turn out to be essential for interpreting electrokinetic and electroacoustic phenomena in dispersions of porous particles.  相似文献   

3.
Water-in-oil emulsions of Athabasca bitumen diluted with toluene have been studied using the latest advances in acoustic and electroacoustic spectroscopy. From the sound attenuation spectra of emulsions, the water droplet size distribution is measured. The electrical surface charge density of the water droplets is obtained from the colloid vibration current. In the case of freshly prepared water-in-oil emulsions, the droplet size increased while the surface charge density decreased with time. The time-dependent relaxation of the surface charge ranges from several hours to 3 days, and it is probably due to the slow adsorption/desorption kinetics of bituminous components at the water-oil interface. This study illuminates the contribution of the electrostatic interactions to the stability of water-in-oil emulsions.  相似文献   

4.
The adsorption behavior of dipalmitoylphosphatidylcholine (DPPC), which is the major component of lung surfactant, at the air/aqueous interface and the competitive adsorption with bovine serum albumin (BSA) were studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. Dynamic surface tensions lower than 1 mN/m were observed for DPPC dispersions, with mostly vesicles, prepared with new protocols, involving extensive sonication above 50 °C. The lipid adsorbs faster and more extensively for DPPC dispersions with vesicles than with liposomes. For DPPC dispersions by a certain preparation procedure at T > Tc, when lipid particles were observed on the surface, dynamic surface tensions as low as 1 mN/m were measured. Moreover, IRRAS intensities and ellipsometric δΔ values were found to be much higher than the values for other DPPC dispersions or spread DPPC monolayers, suggesting that a larger amount of liposomes or vesicles adsorb on the surface. For DPPC/BSA mixtures, the tension behavior is controlled primarily by BSA, which prevents the formation of a dense DPPC monolayer. When BSA is injected into the subphase with a spread DPPC monolayer or into a DPPC dispersion with preadsorbed layers, little or no BSA adsorbs and the DPPC layer remains on the surface. When a DPPC monolayer is spread on a BSA solution at 0.1 wt% at 25 °C, then DPPC lipid can displace the adsorbed BSA molecules. The lack of BSA adsorption, and the expulsion of BSA by DPPC monolayer is probably due to the strong hydrophilicity of the lipid polar headgroup. When a DPPC dispersion is introduced with Trurnit's method or when dispersion drops are sprayed onto the surface of a DPPC/BSA mixture, the surface tension becomes lower and is controlled by DPPC, which can prevent the adsorption of BSA. The results may be important in understanding inhibition of lung surfactants by serum proteins and in designing efficient protocols of surfactant preparation and administration.  相似文献   

5.
《Fluid Phase Equilibria》2001,178(1-2):73-85
The speed of sound of the gaseous 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) was measured for temperatures from 273 to 333 K and pressures from 26 to 315 kPa with a cylindrical, variable-path acoustic interferometer operating at 156.252 kHz. The uncertainty of the speed of sound was less than ±0.05%. The ideal-gas heat capacity at constant pressure and the second acoustic virial coefficients were determined over the temperature range from the speed of sound measurements. The uncertainty of the ideal-gas heat capacity at constant pressure was estimated to be less than ±0.5%. The ideal-gas heat capacity at constant pressure results and second virial coefficients calculated from the present speed of sound measurements were compared with the available data.  相似文献   

6.
润湿剂促进燃煤细颗粒声波团聚脱除的实验研究   总被引:3,自引:0,他引:3  
在声波团聚室中研究了润湿剂液滴与细颗粒碰撞团聚脱除特性,提出了一种利用润湿剂促进细颗粒在声波场中捕集的新方法。结果表明,不同润湿剂溶液对细颗粒在声波场中的团聚脱除效果存在较大差异,采用JFC和FS-310润湿剂溶液时,细颗粒分级脱除效率与采用水时的分级脱除效率相近。而SDS和Silanol w22溶液,则可有效提高细颗粒在各粒径段的分级脱除效率。细颗粒在声波场中的脱除效率与润湿剂润湿性能具有很好的相关性,随润湿剂对细颗粒相对接触角增大而降低,在声压级为150 dB时,相对接触角由83°降低到0°,细颗粒脱除效率提高了18%,在无声场作用下,脱除效率仅提高了5%。细颗粒脱除效率随声压级的增大而提高,在低声压级条件下,添加润湿剂可有效提高细颗粒脱除效率,声压级在130 dB时,添加SDS溶液液滴后细颗粒脱除效率比声场单独作用时的脱除效率提高了25%。表明添加润湿剂可有效提高细颗粒在声波场中的团聚脱除效率,实现在低声压级条件下,获得高的细颗粒脱除效率。  相似文献   

7.
Adsorption of bovine serum albumin at solid/aqueous interfaces   总被引:3,自引:0,他引:3  
Adsorption of soluble serum proteins on hydrophilic and hydrophobic solid surfaces is important for biomaterials and chromatographic separations of proteins. The adsorption of bovine serum albumin (BSA) from aqueous solutions was studied with in situ ATR-IR spectroscopy, and with ex situ ATR-IR, ellipsometry, and water wettablity measurements. The results were used to quantitatively determine the adsorbed film thickness and surface density of BSA on hydrophilic silicon oxide/silicon surfaces, and on these surfaces covered with a hydrophobic lipid monolayer of dipalmitoylphosphatidylcholine (DPPC). The water contact angles were 5° for silicon oxide, 47° ± 1° for the DDPC monolayer, and 53° ± 1° for the BSA monolayers. At 25 °C, and with 0.01–1 wt% BSA in water, the surface densities range from Γ = 2.6–5.0 mg/m2, and the film thicknesses range from d = 2.0–3.8 nm, on the assumption that the film is as dense as bulk protein. These results, and certain changes in the IR amide I and II bands of the protein, indicate that the protein adsorbs as a side-on monolayer, with some flattening due to unfolding or denaturation. The estimated -helical content for protein in buffer solutions is 15% higher than for solutions in water. The adsorption density reaches a steady-state value within 10 min for the lowest concentration, but does not appear to reach a steady-state value after 3 h f‘or the higher concentrations. Adsorption of BSA on a silicon oxide surface covered with a monolayer of DPPC leads to an adsorbed protein film of about half the thickness and surface density than on silicon oxide, but the same contact angle, indicating more protein unfolding on the hydrophobic than on the hydrophilic surface.  相似文献   

8.
Transient grating experiments performed with evanescent fields resulting from total internal reflection at an interface between a polar absorbing solution and an apolar transparent solvent are described. The time evolution of the diffracted intensity was monitored from picosecond to millisecond time scales. The diffracted signal originates essentially from two density phase gratings: one in the absorbing phase induced by thermal expansion and one in the transparent solvent due to electrostriction. A few nanoseconds after excitation, the latter grating is replaced by a thermal grating due to thermal diffusion from the absorbing phase. The speed of sound and the acoustic attenuation measured near the interface are found to be essentially the same as in the bulk solutions. However, after addition of a surfactant in the polar phase, the speed of sound near the interface differs substantially from that in the bulk with the same surfactant concentration. This effect is interpreted in terms of adsorption at the liquid/liquid interface. Other phenomena, which are not observed in bulk experiments, such as acoustic echoes and a fast oscillation of the signal intensity, are also described.  相似文献   

9.
Three types of composites prepared by special pultrusion technology are tested for acoustic suitability as designed for industrial production of vibrating rods. Thermosetting pultrusion as a novel technique is introduced in more details. Isophtalic polyester matrix (Ashland S 599) reinforced by glass roving (OCV) discharged optimum results providing best listening tests in accordance with the dynamic mechanical analysis measurements of relative bend factor (Young’s modulus) and glass transformation temperature (T g) as well as with the transverse vibrational frequencies and the sound attenuation in impact tests.  相似文献   

10.
Protein foams play an important role in both food and biotechnological processes. A sound understanding of foaming properties of proteins relevant to such processes is useful e.g. to allow adequate control of unwanted foams and appropriate choice of protein-physical system when foams of certain characteristics are required. In general, measurements of changes in foam volume (volumetric method) are used for foam characterisation. However, recently there has been increased interest in the use of measurement methods based on conductivity and capacitance. Simple relative techniques based on electrical conductivity measurements provide information on both foamability and foam stability. A multi point conductivity measurement system has been designed and used for characterisation of model protein foams (0.1 and 1.0 mg ml−1 Bovine serum albumin, BSA). The solution of BSA was sparged with nitrogen or carbon dioxide gas at constant flow rate (90 cm3 min−1) via a stainless steel sinter (0.5 or 2.0 μm in pore size). A comparison of foaming properties determined by volumetric and conductimetric techniques is provided. Both methods show that more stable foams are obtained for solutions at higher BSA concentrations. At all BSA concentrations, higher foamability and stability are achieved with a smaller sinter pore size. When nitrogen rather than carbon dioxide is used as a dispersed phase, higher foamability and foam stability are obtained. The conductivity measurements indicate that foamability is dependent on gas type, whereas, volumetric measurements do not show such differences.  相似文献   

11.
To overcome the disadvantages both of microparticles and nanoparticles for inhalation, we have prepared nanocomposite particles as drug carriers targeting lungs. The nanocomposite particles having sizes about 2.5 μm composed of sugar and drug-loaded PLGA nanoparticles can reach deep in the lungs, and they are decomposed into drug-loaded PLGA nanoparticles in the alveoli. Sugar was used as a binder of PLGA nanoparticles to be nanocomposite particles and is soluble in alveolar lining fluid. The primary nanoparticles containing bioactive materials were prepared by using a probe sonicator. And then they were spray dried with carrier materials, such as trehalose and lactose. The effects of inlet temperature of spray dryer were studied between 60 and 120 °C and the kind of sugars upon properties of nanocomposite particles. When the inlet temperatures were 80 and 90 °C, nanocomposite particles with average diameters of about 2.5 μm are obtained and they are decomposed into primary nanoparticles in water, in both sugars are used as a binder. But, those prepared above 100 °C are not decomposed into nanoparticles in water, while the average diameter was almost 2.5 μm. On the other hand, nanocomposite particles prepared at lower inlet temperatures have larger sizes but better redispersion efficiency in water. By the measurements of aerodynamic diameters of the nanocomposite particles prepared with trehalose at 70, 80, and 90 °C, it was shown that the particles prepared at 80 °C have the highest fine particle fraction (FPF) value and the particles are suitable for pulmonary delivery of bioactive materials deep in the lungs. Meanwhile the case with lactose, the particles prepared at 90 °C have near the best FPF value but they have many particles larger than 11 μm.  相似文献   

12.
Glass transition characteristics and mechanical wave attenuation of the neat and filled styrene‐butadiene rubber (SBR) containing 10 wt % of rigid monosize polystyrene particles of various diameters from several hundred microns down to several tens of nanometers were investigated by dynamic mechanical thermal analysis, impedance tube, and ultrasonic spectroscopy. The results showed the matrix damping capacity and the breadth of glass transition increase by reducing the size of rigid particles due to the matrix‐particles interfacial area increase as the major governing parameter. Matrix glass transition broadening toward higher temperatures was attributed to the increased dynamic heterogeneity induced by fillers, whereas the damping capacity increase was assigned to contribution of interfacial friction loss mechanism. The proposed postulation was confirmed based on the calculated temperature distribution of the relaxing matrix volume fraction. Sound wave attenuation by the matrix and PS particles filled systems led to a broad absorption peak for the former and appearance of a secondary absorption peak at lower frequencies for the latter. Intensity of this secondary peak was highest for the system containing PS nanoparticles. Finally, ultrasonic attenuation enhanced by the PS particle size to wavelength ratio increase according to αsca ~ (d/λ)0.38 scaling law and declined by replacing the dense particles with larger hollow PS particles. Comparison of the normalized attenuation of the PS particle filled SBR in various mechanical wave attenuation regimes implied low sensitivity to particle size in vibration, mild differentiation in the sound, and finally severe differentiation in the ultrasound regimes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 82–88, 2010  相似文献   

13.
We describe two different techniques (acoustics and electroacoustics), both of which employ ultrasound instead of light for extracting information about the properties of liquid-based dispersions. Ultrasound can propagate through samples that are not transparent for light, which open up many new applications not possible with classical light scattering methods. Acoustic and electroacoustic techniques offer a unique opportunity to characterize concentrated dispersion, emulsions and microemulsions in their natural states. Elimination of a dilution step required for most other techniques (light scattering, sedimentation, electrophoresis) is crucial for an adequate characterization of liquid dispersions, especially when the high concentration leads to structured systems. As with any macroscopic method, ultrasonic techniques characterize the sample in two steps. The first step is to measure some macroscopic property. The second step involves some theoretical treatment of the measured raw data which yields the desired information. Acoustic spectroscopy deals with measuring the attenuation of ultrasound within a certain frequency range. Electroacoustic spectroscopy has two implementations depending on the driving force. We emphasize here on the so-called Colloid Vibration Current (CVI) which is generated by the sound wave as it passes through the dispersion. A review of the theoretical basis of acoustics and electroacoustics is given, with emphasis on models that have been applied to concentrated systems. Recently, new theories have been developed for both acoustics and electroacoustics using a 'coupled phase model' and 'cell model concept'. The coupled phase model is widely used for describing a relative motion of the particles and liquid in the sound wave. The cell model approach opens the way to include both particle-particle interactions and polydispersity into the theoretical model. Experimental evidence is presented that shows that this new approach is successful in concentrated systems up to 45% vol. A short review of the possible applications of acoustics and electroacoustics measurements to a range of systems is presented including: ceramics, mixed dispersed systems, chemical-mechanical polishing abrasives, emulsions, microemulsions and latex materials.  相似文献   

14.
Photoinduced electron transfer (PET) from excited probes attached to proteins is of considerable current interest. Photochemical processes following 532 nm excitation of triphenyl methane dye, crystal violet (CV+) bound to a protein, bovine serum albumin (BSA), have been investigated in picosecond (ps) to microseconds (μs) time scales by flash photolysis technique. The excited singlet state lifetime of CV+ is found to be increased to 130 ps as compared to 1–5 ps for the unbound dye in low viscosity solvents. From flash photolysis studies in microsecond region, transient absorption in the region 650 nm is observed which is attributed to the dication radical CV√2+ formed by electron transfer from 3CV+* to BSA, contrary to electron transfer from BSA to the excited dye as proposed in a recent report. Supporting spectral evidence for the electron transfer from 3CV+* to BSA is obtained from pulse radiolysis studies.  相似文献   

15.
The mechanism of the effect of particle addition on sonochemical reaction is studied through the measurements of frequency spectrum of sound intensity for evaluating the cavitation noise and the absorbance for the liberation of iodine from an aqueous solution of KI as an index of oxidation reaction by ultrasonic irradiation in the presence or absence of alumina particles. As it is expected that both the acoustic noise and a rise in temperature in the liquid irradiated by intense ultrasound will increase with the number of collapsing bubbles, these are supposed to be the best tools for evaluating the relative number of bubbles. In the present investigation, it has been shown that the addition of particles with appropriate amount and size results in an increase in the absorbance when both the acoustic noise and the rise in the liquid temperature due to cavitation bubbles also increase. This suggests that the enhancement in the yield of sonochemical reaction by appropriate particle addition comes from an increase in the number of cavitation bubbles. The existence of particle in liquid provides a nucleation site for cavitation bubble due to its surface roughness, leading to the decrease in the cavitation threshold responsible for the increase in the number of bubbles when the liquid is irradiated by ultrasound. Thus, from the present investigation, it is clarified that the particle addition has a potential to enhance the yield in the sonochemical reaction.  相似文献   

16.
The CMC and various acoustic parameters of praseodymium soaps in 1-pentanol have been determined by ultrasonic velocity measurements. The results show that the ultrasonic velocity, specific acoustic impedance, apparent molal compressibility, and molar sound velocity increase while adiabatic compressibility and intermolecular free length decrease with increasing concentration and chain length of soap.  相似文献   

17.
研究了Tb1-xDyx(Fe1-yMny)1.95合金的磁致伸缩、声学等性质及其在水声换能器中的应用。当外加的磁场强度≥800kA·m-1时,磁致伸缩系数值在(1300~1800)×10-6范围,有效机电偶合系数值084~093,声速为2168~2856m·s-1,杨氏模量为(506~726)×1010N·m-2;用合金棒材研制水声换能器,该换能器总长300mm,总重2kg,其共振频率为24kHz,发射电流响应173dB,频宽1kHz,电声效率45%  相似文献   

18.
Abstract

The acoustic nonlinearity parameter B/A along with intermediate quantities such as the pressure derivative of sound speed and the phase shift were measured in 8 linear alkanes and a series of four isomers of hexane. The influences of temperature and chain length on these quantities were revealed. It was found that the phase shift parameter is more sensitive to molecular structure and temperature than B/A and that the pressure derivative of sound speed.  相似文献   

19.
The objective of this study was to examine the effects of acetonitrile (AN) on the adsorption behavior of bovine serum albumin (BSA) onto calcium hydroxyapatite [Ca10(PO4)6(OH)2 Ca10, Hap] materials by combining the ultraviolet (UV) and circular dichroism (CD) measurements of BSA solution. The structural change of BSA molecules with addition of AN was investigated by UV and CD spectroscopy measurements prior to studying adsorption behavior of BSA onto Hap. The CD spectra revealed that the fraction of alpha-helical content of BSA is remarkably decreased at AN concentrations above 30 vol.%, while beta-sheet content is increased. On the other hand, the percentages of random coil and turn contents were decreased only slightly. In addition to this secondary structural change of BSA, the UV spectra suggested that the tertiary structure of protein molecules was also changed by the addition of large amounts of AN; BSA molecules associate to form molecular aggregates at [AN]> or =40 vol.%. From the adsorption of BSA onto Hap particles (ca. 30 nm in the particle length) from a water-AN mixed solution, it was revealed that the adsorption behavior of BSA strongly depends on the change of secondary and tertiary structures of BSA by addition of AN. The contraction of BSA molecules at low AN concentrations (10-20 vol.%) gave their small cross-sectional area, providing a large amount of adsorption (n(BSA)), although n(BSA) was decreased above 30 vol.% AN by enlargement of BSA molecules with solvation and unfolding some alpha-helix domains. The n(BSA) values of the systems with AN exhibited a maximum; n(BSA) was increased at a lower BSA concentration region, although it was decreased at a higher BSA concentration due to self-association. Accompanying the change of n(BSA) with AN addition, the maxima of electrophoretic mobility (em) of the Hap particles were observed for the systems with AN, although the em of Hap particles was normally increased and saturated with increase in protein coverage for the native structure on the system without AN. On the other hand, because the aggregated BSA molecules could be cooperatively bound, the adsorption of BSA onto the Hap particles with large size (108 nm in the particle length) was enhanced in the presence of AN.  相似文献   

20.
We report on the simultaneous measurements of the speed of sound and the density in liquid water under negative pressure. Application of a focused acoustic wave to the bulk liquid is able to generate negative pressures before nucleation of the vapor phase occurs. A method for time-resolved Brillouin scattering is developed to measure the speed of sound during the passage of a 1 MHz ultrasonic wave. This is coupled with a fiber optic probe hydrophone which allows the determination of the density. Together, these methods give an ambient temperature equation of state of metastable liquid water down to the acoustic cavitation threshold. Empirical equations of state of water are based on experimental data at positive pressure; the validity of their extrapolation to negative pressures had been tested only indirectly or with very weakly metastable liquid. We provide thermodynamic data that prove the fidelity of recent equations of state down to -26 MPa. However, this raises questions regarding the nature of the cavitation threshold observed in acoustic experiments, which is far less negative than expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号