首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SnO2 nanowires were synthesized using a direct gas reaction route and were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), selected-area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and Raman-scattering spectroscopy. XRD, SEM, SAED and HRTEM indicated that the products were tetragonal SnO2 nanowires with diameters of 10–50 nm. The nanowires were single crystal and solid inside. Dendritic nanowires were observed for the first time. Three vibrational modes were observed in the Raman spectra of the samples. Received: 7 January 2002 / Accepted: 11 April 2002 / Published online: 19 July 2002  相似文献   

2.
In this work, GaN nanowires were fabricated on Si substrates coated with NiCl2 thin films using chemical vapor deposition (CVD) method by evaporating Ga2O3 powder at 1100 °C in ammonia gas flow. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM) and photoluminescence (PL) spectrum are used to characterize the samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure. The growth mechanism of GaN nanowires is also discussed.  相似文献   

3.
GaN nanowires (NWS) were synthesized at different temperatures by ammoniating Ga2O3/Co films deposited on Si (111) substrate. X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscope (HRTEM), Fourier transformed infrared spectra (FTIR) and photoluminence (PL) spectra were used to characterize the influences of the ammoniating temperature on the morphology, crystallinity and optical properties of GaN NWS. Our results indicate that the samples are all of wurtzite structure and also show that the GaN NWS ammoniated at 950 °C have the best morphology and crystallinity with a single-crystalline structure, and at this temperature the PL spectrum with the strongest ultraviolet (UV) peak is observed. PACS 61.46.-w; 71.55.Eq; 81.15.Cd; 81.07.-b; 61.10.Nz  相似文献   

4.
Straight and smooth GaN nanowires were synthesized on quartz substrates through the direct reaction of Ga2O3 thin films with flowing ammonia in a horizontal oven without using a template or catalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM) and photoluminescence (PL) were used to characterize the samples. The straight and smooth cylindrical nanostructures are high quality single crystalline hexagonal wurtzite GaN nanowires with diameters ranging from 5 to 30 nm and lengths up to 20 μm. The near-band-edge emission peak located at 367 nm was observed at room temperature.  相似文献   

5.
GaN nanowires were successfully synthesized at high quality and large yield on Si (1 1 1) substrate through ammoniating Ga2O3/BN films deposited by radio frequency (RF) magnetron sputtering system. X-ray diffraction (XRD), Fourier transformed infrared spectra (FTIR) and selected-area electron diffraction (SAED) confirm that the as-synthesized nanowires are of a hexagonal GaN with wurtzite structure. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) reveal that the nanowires have a straight and smooth curved structure with extremely uniform diameter of about 60 nm, which is helpful to the application of GaN nanowires. The present results demonstrate that the BN is a very important intermedium in the growth of GaN nanowires by this method.  相似文献   

6.
GaN nanowires have been fabricated on Si(1 1 1) substrates by chemical vapor deposition (CVD) method with NiCl2 as catalyst and their compositions, microstructures, morphologies and light emitting properties were characterized by X-ray diffraction (XRD), FT-IR spectrophotometer (FTIR), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), Raman spectroscopy and photoluminescence (PL). The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure and high crystalline quality, having the size of 20-50 nm in diameter and several tens of microns in length with some nano-droplets on their tips, which reveals that the growth mechanism of GaN nanowires agrees with vapor-liquid-solid (VLS) process. Five first-order Raman active phonon bands move to low shift and A1(TO), E1(TO), and E2 (high) bands are overlapped and broaden, which is caused by uncertainty in the phonon wave vector. Five non-first-order active Raman phonons also appear, which is caused by the small dimension and high surface disorder degree. A blue-shift of the band-gap emission occurs due to quantum confinement effect.  相似文献   

7.
GaN nanowires doped with Mg have been synthesized at different temperature through ammoniating the magnetron-sputtered Ga2O3/Au layered films deposited on Si substrates. X-ray diffraction (XRD), Scanning electron microscope (SEM), high-resolution TEM (HRTEM) equipped with an energy-dispersive X-ray (EDX) spectrometer and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of the as-synthesized sample. The results show that the ammoniating temperature has a great impact on the properties of GaN. The optimally ammoniating temperature of Ga2O3/Au layer is 900 C for the growth of GaN nanowires(NWs). The band gap emission (358 nm) relative to that (370 nm) of undoped GaN NWs has an apparent blueshift, which can be ascribed to the doping of Mg. Finally, the growth mechanism is also briefly discussed.  相似文献   

8.
GaN nanowires have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/Cr thin films at 950 °C. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrophotometer, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and photoluminescence (PL) spectrum were carried out to characterize the microstructure, morphology, and optical properties of GaN samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure and high-quality crystalline, have the size of 30-80 nm in diameter and several tens of microns in length with good emission properties. The growth direction of GaN nanowires is perpendicular to the fringe of (1 0 1) plane. The growth mechanism of GaN nanowires is also discussed in detail.  相似文献   

9.
GaN nanowires and nanorods have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/V films at 900 °C in a quartz tube. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectrum were carried out to characterize the structure, morphology, and photoluminescence properties of GaN sample. The results show that the GaN nanowires and nanorods with pure hexagonal wurtzite structure have good emission properties. The growth direction of nanostructures is perpendicular to the fringes of (1 0 1) plane. The growth mechanism is also briefly discussed.  相似文献   

10.
Flower-shape clustering GaN nanorods are successfully synthesized on Si(111) substrates through ammoniating Ga2O3/ZnO films at 950℃. The as-grown products are characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), field-emission transmission electron microscope (FETEM), Fourier transform infrared spectrum (FTIR) and fluorescence spectrophotometer. The SEM images demonstrate that the products consist of flower-shape clustering GaN nanorods. The XRD indicates that the reflections of the samples can be indexed to the hexagonal GaN phase and HRTEM shows that the nanorods are of pure hexagonal GaN single crystal. The photoluminescence (PL) spectrum indicates that the GaN nanorods have a good emission property. The growth mechanism is also briefly discussed.  相似文献   

11.
A mass of GaN nanowires has been successfully synthesized on Si(111) substrates by magnetron sputtering through ammoniating Ga2O3/Co films at 950℃. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscope and Fourier transformed infrared spectra are used to characterize the samples. The results demonstrate that the nanowires are of single-crystal GaN with a hexagonal wurtzite structure and possess relatively smooth surfaces. The growth mechanism of GaN nanowires is also discussed.  相似文献   

12.
Rare earth metal seed Tb was employed as catalyst for the growth of GaN wires. GaN nanowires were synthesized successfully through ammoniating Ga2O3/Tb films sputtered on Si(1 1 1) substrates. The samples characterization by X-ray diffraction and Fourier transform infrared indicated that the nanowires are constituted of hexagonal wurtzite GaN. Scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy showed that the samples are single-crystal GaN nanowire structures. The growth mechanism of the GaN nanowires is discussed.  相似文献   

13.
Single-crystalline SnO2 nanowires, nanobelts and nanodendrites were synthesized by a simple gas-reaction route on a large scale at 900 °C. They were characterized by means of X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). FE-SEM images showed that the products consisted of nanowires, nanobelts and nanodendrites that represent a novel morphology reported for the first time. XRD, SAED and EDS indicated that they were single-crystalline tetragonal SnO2. The influence of experimental conditions on the morphologies of the products is discussed. Received: 3 June 2002 / Accepted: 10 June 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: 86-10/82649531, E-mail: xlchen@aphy.iphy.ac.cn  相似文献   

14.
CuO nanowires have been synthesized by heating a Cu foil in an ambient condition. The diameters of nanowires can be controlled by changing the annealing temperature. The morphology, composition, and structure were analyzed by using X-ray diffraction (XRD) and scanning electron microscope (SEM). To investigate the detailed layering structure of the substrates after oxidation, the cross-sectional analysis was also performed by using field emission-SEM and energy dispersive X-ray spectroscopy (EDX). The EDX measurements indicated that the CuO nanowires were grown on the CuO/Cu2O layer, which was formed on the surface of Cu foil.  相似文献   

15.
Large scale NdB6 nanowires have been successfully fabricated for the first time using a self-catalyst method with Nd powders and boron trichloride (BCl3) gas mixed with hydrogen and argon. X-ray diffraction, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) were used to characterize the samples. Transmission electron microscopy (TEM) reveals that the NdB6 nanowires are single crystals with cubic structure. Our investigation forms part of a series of studies for finding comparatively inexpensive methods to prepare RB6 nanomaterials.  相似文献   

16.
Spinel CoFe2O4 nanowire arrays were synthesized in nanopores of anodic aluminum oxide (AAO) template using aqueous solution of cobalt and iron nitrates as precursor. The precursor was filled into the nanopores by vacuum impregnation. After heat treatment, it transformed to spinel CoFe2O4 nanowires. The structure, morphology and magnetic properties of the sample were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results indicate that the nanowire arrays are compact. And the individual nanowires have a high aspect ratio, which are about 80 nm in diameter and 10 μm in length. The nanowires are polycrystalline spinel phase. Magnetic measurements indicate that the nanowire arrays are nearly magnetic isotropic. The reason is briefly discussed. Moreover, the temperature dependence of the coercive force of the nanowire arrays was studied.  相似文献   

17.
In this study, we demonstrate the large-scale synthesis of beta gallium oxide (β-Ga2O3) nanowires through microwave plasma chemical vapor deposition (MPCVD) of a Ga droplet in the H2O and Ar atmosphere at 600 W. Unlike the commonly used MPCVD method, the H2O, not mixture of gas, was employed to synthesize the nanowires. The ultra-long β-Ga2O3 nanowires with diameters of about 20-30 nm were several tens of micrometers long. The morphology and structure of products were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM). The growth of β-Ga2O3 nanowires was controlled by vapor-solid (VS) crystal growth mechanism.  相似文献   

18.
In2O3 nanowires have been successfully fabricated on a large scale from indium particles by thermal evaporation at 1030 °C. The as-synthesized products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images show that these nanowires are uniform with diameters of about 60–120 nm and lengths of about 15–25 μm. XRD and selected-area electron diffraction analysis together indicate that these In2O3 nanowires crystallize in a cubic structure of the bixbyite Mn2O3 (I) type (also called the C-type rare-earth oxide structure). The growth mechanism of these nanowires is also discussed. Received: 29 June 2001 / Accepted: 28 September 2001 / Published online: 20 December 2001  相似文献   

19.
Wurtzite GaN nanorods have been successfully synthesized on Si(111) substrates through ammoniating Ga2O3/Nb films under flowing ammonia atmosphere at 950 °C in a quartz tube. The nanorods have been confirmed as hexagonal wurtzite GaN by X-ray diffraction (XRD) and selected-area electron diffraction (SAED). Scanning electron microscopy (SEM) and field-emission transmission electron microscope (FETEM) reveal that the nanorods are straight and uniform, with a diameter of ranging from 100 to 200 nm and lengths up to several microns. The photoluminescence spectra (PL) measured at room temperature only exhibit a strong emission peak at 368.5 nm. Finally, the growth mechanism of GaN nanorods is also briefly discussed.  相似文献   

20.
Uniform and large-scale Co-Ni-P alloy nanowire arrays have been fabricated by autocatalytic redox reaction in an anodic alumina membrane (AAM). The images of Co-Ni-P alloy nanowire arrays and single nanowires are obtained by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. Selected area electron diffraction (SAED), X-ray diffraction (XRD) and energy dispersive spectra (EDS) are employed to study the morphology and chemical composition of the nanowires. The results indicate that the Co-Ni-P nanowire arrays are amorphous in structure. The magnetic property of Co-Ni-P nanowire arrays is characterized using a vibrating sample magnetometer (VSM). The hysteresis loops show that the easily magnetized direction of Co-Ni-P nanowire arrays is parallel to the nanowire arrays and that it has obvious magnetic anisotropy as a result of the shape anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号