首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含金属基团的四价锡化合物的合成和取代反应动力学   总被引:1,自引:0,他引:1  
通式为[Fe(CO)~2Cp]~2Sn(Ar)Cl的化合物为一组新的化合物,由[Fe(CO)~2Cp]~2SnCl2与AgMgX反应合成.[Fe(CO)~2Cp]~2Sn(Ar)Cl与各种亲核试剂Y发生取代反应给出另一组新的化合物[Fe(CO)~2Cp]~2Sn(Ar)Y,其中[Fe(CO)~2Sn(p-MeC~6H~4)Br经X射线衍射分析确定结构.[Fe(CO)~2Cp]~2Sn(1,3,5-Me~3C~6H~3)Cl与NAS~2CNMe~2或KSCN在不同溶剂中的反应动力学表明,由于锡易形成高配位中间体,尽管锡上两个较大的金属基团带来一定空间障碍,反应仍主要按SN2机理进行.  相似文献   

2.
The reaction of [ClP(muNtBu)2PNtBuH] (1) with LiBsBu3H yields trans-[HP(muNtBu)2PNtBuH] (2), by contrast, reaction with LiBEt3H yields cis-[HP(mu-NtBu)2PNtBuH] (3). Compounds and represent the first examples of P-H-functionalised cyclophosph(III)azanes. Deprotonation of with BnNa (Bn=benzyl) gives the first example of a secondary phosphine-functionalised cyclodiphosph(III)azane anion [HP(mu-NtBu)2PNtBu]- (4).  相似文献   

3.
The reaction of Fe2+ with CN-, which was first performed in 1704, has been used to synthesize a new series of basic [FeII,III(CN)4L2]n- complexes, where L is a monodentate ligand. trans-Na2[FeII(CN)4(DMSO)2] and cis-[NEt4]2[FeII(CN)4(pyridine)2] are synthesized by the direct reaction of FeCl2 with 4 equiv of CN- in DMSO or pyridine. Air oxidation of the latter compound gives cis-[NEt4][FeIII(CN)4(pyridine)2]. The non-cyanide ligands in these complexes undergo facile ligand exchange reactions with solvent. Reaction of cis-[NEt4]2[FeII(CN)4(pyridine)2] with CO at room temperature gives trans-[NEt4]2[FeII(CN)4(pyridine)(CO)].  相似文献   

4.
The high-yield synthesis, spectroscopic and structural determination of three new uranium(IV) and thorium(IV)ate complexes supported by three different diamido ether ligands are reported. The reaction of Li2[2,6-iPr2PhN(CH2CH2)]2O (Li2[DIPPNCOCN]) with 1 equiv. of UCl4 in THF generates [DIPPNCOCN]UCl3Li(THF)2(1), while reaction in toluene/ether gives salt-free [DIPPNCOCN]UCl2.1/2C7H8(2), which was identified by paramagnetically shifted 1H NMR. Reaction of 0.5 equiv. of {[tBuNON]UCl2}2([tBuNON]=[(CH3)3CN(Si(CH3)2)]2O2-) with 3.5 equiv. LiI in toluene and a minimal amount of THF results in [tBuNON]UI3Li(THF)2(3) and is very similar in structure to 1. {[MesNON]ThCl3Li(THF)}2(4), a dimeric complex with a Th2Li2Cl6 core, is prepared by reaction of Li2[2,4,6-Me3PhN(Si(CH3)2)]2O (Li2[MesNON]) with ThCl4 in THF. The analogous reaction in toluene did not yield the salt-free complex but rather a sterically crowded diligated compound, [MesNON]2Th (5), which was also structurally characterized. Complex 5 was prepared rationally by reacting 2 equiv. Li2[MesNON] with ThCl4 in toluene. The reaction of 1 and 3 with 2 equiv. of LiCH2Si(CH3)3 generates the stable, salt-free organoactinides [DIPPNCOCN]U(CH2Si(CH3)3)2(6) and [tBuNON]U(CH2Si(CH3)3)2(7). Complex 6 was structurally characterized. These reactions illustrate the viability of ate complexes as useful synthetic precursors.  相似文献   

5.
Reaction of [Mo2Cp2(mu-H)(mu-PHR*)(CO)4] with DBU followed by O2 gives the first anionic phosphinidene oxide complex (H-DBU)[MoCp{P(O)R*}(CO)2] (1) (DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene; R* = 2,4,6-C6H2tBu3). This anion displays three different nucleophilic sites located at the O, P, and Mo atoms, as illustrated by the reactions reported. Thus, reaction of 1 with excess HBF4.OEt2 gave the fluorophosphide complex [MoCp(PFR*)(CO)2] via the hidroxophosphide intermediate [MoCp{PR*(OH)}(CO)2]. Related alkoxyphosphide compounds [MoCp{P(OR)R*}(CO)2] (R = Me, C(O)Ph) were prepared by reaction of 1 with [Me3O]BF4 and PhC(O)Cl, respectively, whereas reaction of 1 with MeI or C3H5Br gave the P,O-bound phosphinite complexes [MoCp(kappa2-OPRR*)(CO)2] (R = Me, C3H5). Metal-based electrophiles were found to bind at either O or Mo positions. Thus, reaction of 1 with [ZrCl2Cp2] gave the phosphinidene oxide bridged [MoCp{P(OZrClCp2)R*}(CO)2], whereas reaction with SnPh3Cl gave trans-[MoCp{P(O)R*}(CO)2(SnPh3)], an heterometallic complex having an intact terminal P(O)R* ligand.  相似文献   

6.
The Diels-Alder reaction of substituted cyclohexadienes with substituted phenylacetylenes offers an attractive alternative for the synthesis of biaryl compounds via a two-step cycloaddition/cycloelimination pathway. Quantum mechanical calculations using B3LYP and M06-2X density functional methods for the reaction of 2-chloro-6-nitrophenylacetylene with 1-carbomethoxy-cyclohexadiene show the reaction proceeds by a stepwise diradical [4+2] cycloaddition followed by concerted [2+4] cycloelimination of ethylene. [2+2] cycloadducts are also the result of stepwise addition. [2+2] cycloadducts isomerize to [4+2] cycloadducts via diradical pathways, which involve the same diradical intermediate in cycloaddition. There is also a competitive conrotatory ring opening followed by trans-cis double bond isomerization pathway of the [4.2.0] bicycle (the [2+2] cycloadduct) to give the cis,cis,cis-1,3,5-cyclooctatriene.  相似文献   

7.
硫杂杯[4]二醛基衍生物(1)在水合肼中肼解,合成了新化合物硫杂杯[4]二醛腙基衍生物(2);1和2在弱酸的催化下反应合成了新的具有对称结构的苄连氮双硫杂杯[4]芳烃(3);2和3的结构经1H NMR,IR,ESI-MS和元素分析表征.  相似文献   

8.
The reaction of the sodium salt of 1-amino-closo-dodecaborate [Na]2[NH2-B12H11] ([Na]2[1]) with [Au(PPh3)Cl] and [Ni(THF)2(Br)2] led to eta 1(N) coordination of 1in [Na][Au(PPh3)(NH2-B12H11)] (2) and [Na]6[Ni(NH2-B12H11)4] (3), respectively. Furthermore, eta 2(N,BH) coordination of was found in [MePPh3][Rh(PPh3)2(NH2-B12H11)] (4), which was synthesized by the reaction of [MePPh3][Na][1] with [Rh(PPh3)3Cl]. All compounds were characterized by single crystal X-ray diffraction and heteronuclear NMR spectroscopy.  相似文献   

9.
Recently, it was reported that both dienylfurans and dienylisobenzofurans could react with dimethyl acetylenedicarboxylate (DMAD) to give [8+2] cycloadducts. Understanding these [8+2] reactions will aid the design of additional [8+2] reactions, which have the potential for the synthesis of 10-membered and larger carbocycles. The present Article is aimed to understand the detailed mechanisms of the originally reported [8+2] cycloaddition reaction between dienylisobenzofurans and alkynes at the molecular level through the joint forces of computation and experiment. Density functional theory calculations at the (U)B3LYP/6-31+G(d) level suggest that the concerted [8+2] pathway between dienylisobenzofurans and alkynes is not favored. A stepwise reaction pathway involving formation of a zwitterionic intermediate for the [8+2] reactions between dienylisobenzofurans that contain electron-donating methoxy groups present in their diene moieties and DMAD has been predicted computationally. This pathway is in competition with a Diels-Alder [4+2] reaction between the furan moieties of dienylisobenzofurans and DMAD. When there is no electron-donating group present in the diene moieties of dienylisobenzofurans, the [8+2] reaction occurs through an alternative mechanism involving a [4+2] reaction between the furan moiety of the tetraene and DMAD, followed by a [1,5]-vinyl shift. This computationally predicted novel mechanism was supported experimentally.  相似文献   

10.
Treatment of N,N-dimethyl 2-[2-(2-ethynylphenyl)ethynyl]anilines (1) with 1.2 equiv of iodine in CH(2)Cl(2) gave benzo[a]carbazoles (2) in good yields. Mechanistic studies showed this reaction must go through the haloindole (3) followed by iodonium ion catalyzed atom-transfer cyclization reaction to give the benzo[a]carbazoles.  相似文献   

11.
The syntheses and structures of zirconium and titanium complexes containing the novel chelating trisilane-1,3-diolate ligand [Me2Si(R2SiO)2]2- (R = SiMe3) (5)-H2 are reported. The chloride complexes [Me2Si(R2SiO)2]TiCl2 (7a) and [Me2Si(R2SiO)2]ZrCl2 x 2 THF (7b) were prepared by the reaction of MCl4 (M = Ti, Zr) with [Me2Si(R2SiO)2]2Ti (6a) and [Me2Si(R2SiO)2]2Zr (6b), which are derived from the reaction of 5 with M(NEt2)4, respectively. In the presence of TiCl4, complexes 6a and 7a undergo a ring-opening reaction to produce the dinuclear complex [Me2Si(R2SiO)2][TiCl3]2 (9). [Me2Si(R2SiO)2]TiMe2 (10) and [Me2Si(R2SiO)2]TiBnz2 (11) were prepared in moderate yields from reactions of 7a with 2 equiv of MeMgBr and BnzMgCl, respectively. According to NMR spectroscopic investigations, the reaction of the dimethyltitanium complex 10 with B(C6F5)3 led to full exchange of both methyl groups by C6F5 groups under quantitative formation of [Me2Si(R2SiO)2]Ti(C6F5)2 (12) and a mixture of B(C6F5)(3-n)Me(n), where n = 1-3. The structure of 12 is further evidenced by the preparation of an identical sample from the reaction of 7a with 2 equiv of C6F5MgBr. Refluxing an ether solution of 12 surprisingly gave [Me2Si(R2SiO)2]2TiC6F5]2O (13) as a result of ether cleavage. The structures of the complexes 7a, 7b, 9, 10, and 13 were determined by X-ray crystallography, and structural discussion of the bond parameters will be given.  相似文献   

12.
From reaction of [(Cp*Ir)2HxCl(4-x)] (x=1, 0) and LiBH4, arachno-[[Cp*IrH2]B3H7](1) is produced in moderate yield concurrently with [Cp*IrH4]. In contrast, reaction of [(Cp*Ir)2H2Cl2] with LiBH4 results in arachno-[[Cp*IrH]2(mu-H)B2H5] (3) in high yield at room temperature but a mixture of 1 and [[Cp*IrH]2(mu-H)BH4] (2) at 0 degrees C. BH3 x THF converts 1 to arachno-[(Cp*IrHB4H9] (4) and 2 to 3 with 1 as a minor product. Further, reaction of 3 with excess of BH3 x THF results in formation of nido-[[Cp*Ir]2-(mu-H)B4H7] (6) formed by loss of H2 from the intermediate arachno-[[Cp*IrH]2B4H8] (5). Reaction of 1 with [Co2(CO)8] permits the isolation of two metallaboranes, arachno-[[Cp*Ir(CO)]-B3H7] (7) and nido-[1-[Cp*Ir]-2,3-Co2-(CO)4(mu-CO)B3H7] (8). Treatment of 4 with [Co2(CO)8] gives only one single mixed-metal metallaborane nido-[1-[Cp*Ir]-2-Co(CO)3B4H7 (9) in high yield. Finally, pyrolysis of 8 results in loss of hydrogen and formation of pileo-[1-[Cp*Ir]-2,3-Co2(CO)5B3H5] (10) with a BH-capped square-pyramidal structure. With kinetic control rational synthesis of a variety metallaboranes has been achieved by varying the number of chlorides in the monocyclopentadienylmetal halide dimer, reaction temperature, types of monoborane, and metal fragment sources.  相似文献   

13.
Substituted pyrido,[3',2':4,5]thieno[3,2-b]pyndines were obtained by the reaction of 3-amino-2-benzoylthieno [2,3-b]pyridines with malononitrile and the reaction of 3-cyanopyridine-2(IH)-thiones with 2-aryl-3-bromo-I,I-dicyanopropene. 2-Amino-4-(4-bromophenyl)-7, 9-dimethyl-3-cyanopyrido [3',2':4,5]thieno[3, 2-b]-pyridine was used for the synthesis of a derivative of pyrido[3",2":4', 5']thieno[2',3':5,6]pyrido[2,3-d]-pyrimidine. The structure of these compounds was confirmed by spectral data and x-ray diffraction structural analysis.Deceased.  相似文献   

14.
The synthesis and characterization of novel cis-1,2-disilylenylethene [cis-LSi{C(Ph)=C(H)}SiL] (2; L=PhC(NtBu)(2)) and a singlet delocalized biradicaloid [LSi(μ(2)-C(2)Ph(2))(2)SiL] (3) are described. Compound 2 was prepared by the reaction of [{PhC(NtBu)(2)}Si:](2) (1) with one equivalent of PhC[triple chemical bond]CH in toluene. Compound 3 was synthesized by the reaction of 1 with two equivalents of PhC[triple chemical bond]CPh in toluene. The results suggest that the reaction proceeds through an [LSi{C(Ph)==C(Ph)}SiL] intermediate, which then reacts with another molecule of PhC[triple chemical bond]CPh to form 3. Compounds 2 and 3 have been characterized by X-ray crystallography and NMR spectroscopy. X-ray crystallography and DFT calculations of 3 show that the singlet biradicals are stabilized by the amidinate ligand and the delocalization within the "Si(μ(2)-C(2)Ph(2))(2)Si" six-membered ring.  相似文献   

15.
[reaction: see text] Indoles are produced regioselectively and in moderate yields by two new processes: (a) from the [CpRu(CO)2]2-catalyzed reaction of nitrosoaromatics (ArNO) with alkynes under carbon monoxide and (b) in a two-step sequence involving the (uncatalyzed) reaction of ArNO with alkynes, followed by reduction of the intermediate adduct.  相似文献   

16.
The reaction of [PPh4]3[Re7C(CO)21] (1) with 1 or more equiv of Hg(OAc)2 in dichloromethane provides the monomercury derivative [PPh4]2[Re7C(CO)21HgOAc] (2) in high yield. However, in the presence of methanol the reaction of 1 with 2 equiv of Hg(OAc)2 yields the dimercury hexarhenium cluster compound [PPh4]2[Re6C(CO)18(HgOAc)2] (3) together with the dirhenium complex [PPh4][Re2(CO)6(mu-OMe)2(mu-OAc)] (4). The dimercury compound 3 reacts with various thiols HS-Z to form thiolate-substituted derivatives [PPh4]2[Re6C(CO)18(HgSZ)2] [Z = C6H4Br (5); C5H4N (6); C2H4COOH (7)]. All new compounds have been characterized by a combination of analytical and spectroscopic data, and the molecular structures of compounds 3-6 have been determined by X-ray crystallography.  相似文献   

17.
Intermolecular hydrophosphination of alkynes with diphenylphosphine is catalyzed by a Yb[bond]imine complex, [Yb(eta(2)-Ph(2)CNPh)(hmpa)(3)], to give alkenylphosphines and phosphine oxides after oxidative workup in good yields under mild conditions. This reaction is also applicable to various carbon[bond]carbon multiple bonds such as conjugated diynes and dienes, allenes, and styrene derivatives. Regio- and stereoselectivity and the scope and limitation of the present reaction clearly differ from those of the corresponding radical reaction. Instead, the reaction takes place through insertion of alkynes to a Yb[bond]PPh(2) species, followed by protonation. In fact, the Yb[bond]phosphido complex, [Yb(PPh(2))(2)(hmpa)(3)], is obtained from the imine complex and phosphine, which exhibits similar catalyst activity for the hydrophosphination. The empirical rate law is nu = k[catalyst](2) [alkyne](1)[phosphine](0) at least under the standard conditions.  相似文献   

18.
Chen CC  Chin LY  Yang SC  Wu MJ 《Organic letters》2010,12(24):5652-5655
Treatment of N,N-dimethyl 2-[2-(2-ethynylphenyl)ethynyl]anilines (1) with 10 mol % of palladium chloride and 2 equiv of cupric chloride in refluxing THF gave benzo[a]carbazoles (6) in good yields. A mechanistic study showed that this reaction must proceed through formation of haloindole (7) followed by a palladium(II)-catalyzed atom transfer cyclization reaction to give the benzo[a]carbazoles.  相似文献   

19.
The reaction between [Pt(nbe)3] (nbe=norbornene), two equivalents of the phosphines PPh3, PMePh2 or PMe2Ph and 1 equivalent of BCl3 affords the platinum dichloroboryl species [PtCl(BCl2)(PPh3)2], [PtCl(BCl2)(PMePh2)2] and [PtCl(BCl2)(PMe2Ph)2]. All three complexes were characterised by X-ray crystallography and reveal that the boryl group lies trans to the chloride. With PMe3 as the phosphine, the complex [PtCl(BCl2)(PMe3)2] is isolated in high yield as a white crystalline powder although crystals suitable for X-ray crystallography were not obtained. Crystals were obtained of a product shown by X-ray crystallography to be the unusual dinuclear species [Pt2(BCl2)2(PMe3)4(micro-Cl)][BCl4] which reveals an arrangement in which two square planar platinum(II) centres are linked by a single bridging chloride which is trans to a BCl2 group on each platinum centre. The reaction of [PtCl(BCl2)(PMe3)2] with NEt3 or pyridine (py) affords the adducts [PtCl{BCl2(NEt3)}(PMe3)2] and [PtCl{BCl2(py)}(PMe3)2], respectively, both characterised spectroscopically. The reaction between [PtCl(BCl2)(PMe3)2] and either 4 equivalents of NHEt2 or piperidine (pipH) results in the mono-substituted boryl species [PtCl{BCl(NEt2)}(PMe3)2] and [PtCl{BCl(pip)}(PMe3)2], respectively, the former characterised by X-ray crystallography. Treatment of either [PtCl(BCl2)(PMe3)2] (in the presence of excess NEt3) or [PtCl{BCl(NEt2)}(PMe3)2] with catechol affords the B(cat) (cat=catecholate) derivative [PtCl{B(cat)}(PMe3)2] which is also formed in the reaction between [Pt(PMe3)4] and ClB(cat) and also from the slow decomposition of [Pt{B(cat)}2(PMe3)2] in dichloromethane over a period of months. The compound [Pt{B(cat)}2(PMe3)2] was prepared from the reaction between [Pt(PMe3)4] and B2(cat)2.  相似文献   

20.
The reaction of [Pt(dmba)(PPh3)Cl] [where dmba = N,C-chelating 2-(dimethylaminomethyl)phenyl] with aqueous ammonia in acetone in the presence of AgClO4 gives the acetonimine complex [Pt(dmba)(PPh3)(NH=CMe2)]ClO4 (1). The reaction of [Pt(dmba)(DMSO)Cl] with aqueous ammonia in acetone in the presence of AgClO4 gives a mixture of [Pt(dmba)(NH=CMe2)2]ClO4 (2) and [Pt(dmba)(imam)]ClO4 (3a) (where imam = 4-imino-2-methylpentan-2-amino). [Pt(dmba)(DMSO)Cl] reacts with [Ag(NH=CMe2)2]ClO4 in a 1:1 molar ratio to give [Pt(dmba)(DMSO)(NH=CMe2)]ClO4 (4). The reaction of [Pt(dmba)(DMSO)Cl] with 20% aqueous ammonia in acetone at 70 degrees C in the presence of KOH gives [Pt(dmba)(CH2COMe)(NH=CMe2)] (5), whereas the reaction of [Pt(dmba)(DMSO)Cl] with 20% aqueous ammonia in acetone in the absence of KOH gives [Pt(dmba)(imam)]Cl (3b). The reaction of [NBu4]2[Pt2(C6F5)4(mu-Cl)2] with [Ag(NH=CMe2)2]ClO4 in a 1:2 molar ratio produces cis-[Pt(C6F5)2(NH=CMe2)2] (6). The crystal structures of 1 x 2 Me2CO, 2, 3a, 5, and 6 have been determined. Values of IC50 were calculated for the new platinum complexes against a panel of human tumor cell lines representative of ovarian (A2780 and A2780 cisR) and breast cancers (T47D). At 48 h incubation time complexes 1, 4, and 5 show very low resistance factors against an A2780 cell line which has acquired resistance to cisplatin. 1, 4, and 5 were more active than cisplatin in T47D (up to 30-fold in some cases). The DNA adduct formation of 1, 4, and 5 was followed by circular dichroism and electrophoretic mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号