首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyelectrolyte gels are charged polymer networks with macro-ions fixed on the polymer chains. In the present paper, the fundamental aspects, properties and application of negatively charged polyelectrolyte gels are reviewed, focusing on the interaction between polyelectrolyte gels and proteins, the surface friction and mechanical strength of polyelectrolyte gels. These characteristic properties of polyelectrolyte gels have considerable potential for practical application, such as soft scaffold of cells, construction of biomimetic actuator and replacement of biological tissues.  相似文献   

2.
The surface charge is a key concept in electrochemistry. Mathematically, the surface charge is obtained from a spatial integration of the volume charge along a particular direction. Ambiguities thus arise in choosing the starting and ending points of the integration. As for electrocatalytic interfaces, the presence of chemisorbates further complicates the situation. In this minireview, I adopt a definition of the surface charge within a continuum picture of the electric double layer. I will introduce surface charging behaviors of firstly ordinary electrochemical interfaces and then electrocatalytic interfaces featuring partially charged chemisorbates. Particularly, the origin of nonmonotonic surface charging behaviors of electrocatalytic interfaces is explained using a primitive model. Finally, a brief account of previous studies on the nonmonotonic surface charging behavior is presented, as a subline of the spectacular history of electric double layer.  相似文献   

3.
In this review, we shortly summarize the basic theoretical milestones achieved in the mean-field theory of room temperature ionic liquids on charged electrodes since the publication of Kornyshev's seminal article in 2007. We pay special attention to the behavior of the differential capacitance profile and the microscopic parameters of ions that can have a substantial influence on it. Among them are parameters of short-range specific interactions, ionic diameters, static polarizabilities, and permanent dipole moments. We also discuss the recent ‘nonlocal’ mean-field theories that can describe the overscreening behavior of the local ionic concentrations, as well as the crossover from overscreening to crowding.  相似文献   

4.
Investigations dealing with fundamental aspects of the interaction between covalently cross-linked polyelectrolyte gels and oppositely charged surfactants are reviewed. For reference, a brief summary of results from recent studies of associative phase separation in linear polyelectrolyte/surfactant mixtures is also included. It is found that great progress has been made in several sub-areas since the first reports appeared in the early 1990's. The frequently observed surfactant-induced volume transition has been studied in detail. Its relation to associative phase separation in solutions and the important role of polyion-mediated micelle–micelle attractions have been clarified. Phase separation in gels, in particular core/shell structures, has been studied in great detail. The importance of network mediated elastic forces between two phases coexisting in the same gel has been demonstrated and some of their consequences have been clarified. Hydrophobic interactions between polyion and micelle have been found to have strong effects on both binding and swelling isotherms. The effect of salt, which has been found to sometimes disfavor, sometimes promote surfactant binding, is quite well understood. The microstructure of gels in the collapsed state has been studied in great detail and is often found to be highly ordered, resembling liquid crystalline phases common to surfactant/water systems. The kinetics of surfactant binding and the associated volume change has been investigated to some extent. Progress has been made for gels displaying phase separation during the volume transition.  相似文献   

5.
In this paper, a novel method was developed to enhance the assembly of polyelectrolyte composite membranes by inducing an electric field during electrostatic adsorption process. The hydrolyzed polyacrylonitrile (PAN) ultrafiltration (UF) membrane was placed in between a capacitor setup. The polyethyleneimine (PEI) was compulsorily assembled on the PAN support under the action of external electric force. Subsequently, the polyelectrolyte composite membranes were evaluated by pervaporation separation of water and alcohol mixture. The membrane obtained with only one PEI layer had a separation factor of 304 and a permeate flux of 512 g/m2 h (75 °C) for pervaporation of 95 wt% ethanol–water mixture. An atomic force microscopy was also used to observe the microtopographical changes. The regularity of the membranes assembled by the new method was also improved in comparison with the membrane assembled by a dynamic layer-by-layer adsorption.  相似文献   

6.
The electrophoretic migration of a highly charged spherical macroion suspended in an aqueous solution of NaCl is studied using the molecular dynamic method. The objective is to examine the effects of the colloidal surface charge density on the electrophoretic mobility (μ) of the spherical macroion. The bare charge and the size of the macroion are varied separately to induce changes in the colloidal surface charge density. Our results indicate that μ depends on colloidal surface charge density in a nonmonotonic manner, but that this relationship is independent of the way the surface charge density is varied. It is found that an increase in colloidal surface charge density may lead to the formation of new sublayers in the Stern layer. The μ profile is also found to have a local maximum for a bare charge at which a new sublayer is formed in the Stern layer, and a local minimum for a bare charge at which the outer sublayer becomes relatively dense. Finally, the electrophoretic flow caused by the migration of the spherical macroion is studied to find that one decisive factor causing the electrophoretic flow is the ability of the macroion to carry anions in the electrolyte solution.  相似文献   

7.
双电层相互重叠时蒙脱胶体表面阴离子的负吸附   总被引:2,自引:0,他引:2  
本文用Ag-AgCl电极判断平衡,测定双电层处于不同重叠程度下肢体表面阴离子的负吸附量Γ.结果表明,胶体表面双电层相互重叠程度可由两胶体表面间的中点电位φd与外Helmhotz面处的电位φd之比表征;阴离子负吸附随双电层重叠程度和电解质浓度的增加而显著减小.  相似文献   

8.
Micropatterned layer‐by‐layer (LbL) assemblies were studied as a potential platform for sensor applications by performing impedance characterization throughout a range of electrolyte concentrations. Conductive LbL thin films were prepared with carbon black nanoparticles dispersed in the polymer matrix to provide an electrically conductive network. LbL assemblies were micropatterned using a photolithographic lift‐off method, and a test circuit was constructed as multiple interdigitating coplanar electrodes. Impedance spectra were collected between 104 and 106 Hz within a flow cell containing NaCl solutions ranging from 0.001–1.0 M. These preliminary results demonstrate the ability to pattern conductive LbL composites and underscore the potential utility and shortcomings of their use in sensor applications.  相似文献   

9.
The stability of capillaries coated with highly charged polyelectrolytes under various analytical conditions was studied, as well as their performance for the analysis of proteins by Capillary Electrophoreis (CE) over a wide range of pH (2.5-9.3). In this study, fused silica capillaries were modified either with a poly(diallyldimethylammonium) chloride (PDADMAC) monolayer or PDADMAC/poly(sodium 4-styrenesulfonate) (PSS) multilayer coatings, using optimal coating conditions previously determined. Results show that the coated capillaries are remarkably stable and efficient to limit protein adsorption under a variety of extreme electrophoretic conditions even in the absence of the coating agent in the background electrolyte which is exceptional for non-covalent coatings. Monolayer coated capillaries were demonstrated for the first time to be stable to acidic rinses and to organic solvents which proves that the stability of the capillaries is highly dependent on the coating procedure used. In addition, PDADMAC/PSS multilayer coatings were found to be stable to alkaline treatments. PDADMAC/PSS coated capillaries gave excellent performances for the analysis of proteins covering a large range of pI (4-11) and of molecular weight (14-65 kDa) over a wide pH range (i.e. 2.5-9.3). Even at high pH 9.3, protein analysis was possible with very good repeatabilities (RSD(tm)<1% and RSD(CPA)<2.6% (n ≥ 8)) and high peak efficiencies in the order of 700,000.  相似文献   

10.
Aqueous mixtures of anionic surfactants with cationically substituted quaternary ammonium derivatives of hydroxyethylcellulose, JR and LR series, were investigated by several techniques. On adding sodium dodecyl sulfate (SDS) to a polyelectrolyte solution, phase separation with precipitation occurs in a co-operative way, and redissolution of precipitation is observed at the critical micelle concentration (CMC) of SDS. This is due to admicelle formation on the polyelectrolyte. The phase separation for the two-headed anionic surfactant systems is also seen, while the concentration where this takes place is near the CMC of the surfactant. This is remarkable in the case of the triethanolamine cocoyl glutamate (TCG)–JR 400 system, in which TCG has a CMC over 1 order of magnitude smaller CMC than that of SDS. Surface tension and the dynamic light scattering measurements show the existence of not only electrostatic interaction between the cationic polyelectrolyte and the two-headed anionic surfactant but also intraction between the adsorbed polymers. The scaling analysis of the precipitation line of the surfactant with polyelectrolyte concentration elucidates that one molecule of TCG can neutralize approximately two charges on JR 400. Received: 9 February 1999 Accepted in revised form: 23 June 1999  相似文献   

11.
童朝晖 《高分子科学》2016,34(5):552-562
The adsorption of weak polybase on oppositely charged planar surfaces has been investigated numerically by using the self-consistent field theory (SCFT). Particular attention was paid to the interplay of monomer-surface electrostatic and non-electrostatic interactions in the adsorption behaviors of weak polybase. In this study, the strength of monomer-surface non-electrostatic interactions was set to be no more than the thermal energy k B T. It was found from the numerical study that in the regime of low surface charge density of the substrate and low pH or high bulk degree of ionization, both the screening-enhanced and screening-reduced salt effects emerge. On the contrary, in the opposite regime, only the screening-reduced salt effect was observed. Moreover, the overall charge neutrality inside the adsorption layer was analyzed. The underlying mechanism governing the adsorption behaviors of weak polybase on oppositely charged surfaces was elucidated.  相似文献   

12.
Recently, electronic devices that make use of a state called the electric double layers (EDL) of ion have opened up a wide range of research opportunities, from novel physical phenomena in solid-state materials to next-generation low-power consumption devices. They are considered to be the future iontronics devices. EDLs behave as nanogap capacitors, resulting the high density of charge carriers is induced at semiconductor/electrolyte by applying only a few volts of the bias voltage. This enables the low-power operation of electronic devices as well as new functional devices. Furthermore, by controlling the motion of ions, ions can be used as semi-permanent charge to form electrets. In this article, we are going to introduce the recent advanced application of iontronics devices as well as energy harvesters making use of ion-based electrets, leading to the future iontronics research.  相似文献   

13.
A soft nanochannel involves a soft interface that contains a polyelectrolyte layer (PEL) sandwiched between a rigid surface and a bulk electrolyte solution. Mass transfer of a neutral solute in a combined electroosmotic and pressure driven flow through a polyelectrolyte grafted charged nanochannel with porous wall is presented in this work. Assuming the PEL as fixed charged layer and PEL-electrolyte interface as a semi-penetrable membrane, analytical solutions were obtained for potential distributions (for small wall potential). Velocity profiles were also derived in the same domains, for both inside and outside the PEL. Convective-diffusive species balance equation was semi-analytically solved inside the PEL. Expression of length averaged Sherwood number was also obtained and effects of different parameters, namely, drag parameter (α), Debye parameter , and PEL thickness were studied in detail. The variation of permeate concentration and permeation flux across the porous wall was obtained.  相似文献   

14.
We investigate the effects of salt concentration and pH on neutralized poly(acrylic acid) (PAA) gels in near physiological salt solutions. Either adding calcium ions or decreasing the pH is found to induce reversible volume transitions but the nature of these transitions seems to be different. For example, the osmotic pressure exhibits a simple power law dependence on the concentration as the transition is approached in both systems, but the power law exponent n is substantially different in the two cases. On decreasing the pH the value of n gradually increases from 2.1 (at pH = 7) to 3.2 (at pH = 1). By contrast, n decreases with increasing calcium ion concentration from 2.1 (in 100 mM NaCl solution) to 1.6 (0.8 mM CaCl2 in 100 mM NaCl solution). In both systems, a strong increase of the small-angle neutron scattering intensity (SANS) is observed near the volume transition. The SANS results reveal that calcium ions favor the formation of linearly aligned regions in PAA gels. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2803–2810, 2008  相似文献   

15.
The osmotic pressure of weakly charged aqueous poly(acrylic acid) (PAA) solutions and the swelling pressure PAA gels were studied by osmotic deswelling at different degrees of ionization (α). In solution, the osmotic pressure was found to scale linearly with concentration, whereas the scaling power of the swelling pressure of gels was higher (1.66). The effect of the ionization degree on the osmotic coefficient in PAA solutions was in agreement with the theory of Borue and Erukhimovich [Macromolecules, 21 , 3240 (1988)]. Ionization increases the swelling capacity of the PAA gels until a plateau is reached at about 35% neutralization. The concentration at equilibrium swelling scales as Ce ~ α?0.6. The contribution of the network to the gel swelling pressure is evaluated by subtracting the osmotic pressure of the polymer solution at the same concentration and degree of ionization. In swollen gels the extended network opposes swelling. As the gel is osmotically deswelled, a state of zero network pressure exists at a certain concentration, below which the network elasticity favors swelling. The crossover concentration shifts to lower values as the degrees of ionization increases. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
A theoretical study of the dynamics of electrical double layer formation near a charged solid surface is presented. A microscopic expression for the time dependent inhomogeneous charge density of an ionic solution next to a newly charged surface is derived by using linear response theory and molecular hydrodynamics. The presence of interionic correlations is included through ionic structure factors. The rate of electrical double layer formation is found to depend rather strongly on ion concentration and on the dielectric constant of the medium. It is also found that the formation of double layer becomes slower with increase in distance from the charged surface.  相似文献   

17.
The starting electrophoretic motion of a porous, uniformly charged, spherical particle, which models a solvent-permeable and ion-penetrable polyelectrolyte coil or floc of nanoparticles, in an arbitrary electrolyte solution due to the sudden application of an electric field is studied for the first time. The unsteady Stokes/Brinkman equations with the electric force term governing the fluid velocity fields are solved by means of the Laplace transform. An analytical formula for the electrophoretic mobility of the porous sphere is obtained as a function of the dimensionless parameters , , , and , where a is the radius of the particle, κ is the Debye screening parameter, λ is the reciprocal of the square root of the fluid permeability in the particle, ρp and ρ are the mass densities of the particle and fluid, respectively, ν is the kinematic viscosity of the fluid, and t is the time. The electrophoretic mobility normalized by its steady-state value increases monotonically with increases in and , but decreases monotonically with an increase in , keeping the other parameters unchanged. In general, a porous particle with a high fluid permeability trails behind an identical porous particle with a lower permeability and a corresponding hard particle in the growth of the normalized electrophoretic mobility The normalized electrophoretic acceleration of the porous sphere decreases monotonically with an increase in the time and increases with an increase in from zero at .  相似文献   

18.
The improvement of hydrophilicity and hemocompatibility of poly(tetramethylene adipate-co-terephthalate) (PTAT) membrane was developed via polyelectrolyte multilayers (PEMs) immobilization. The polysaccharide PEMs included chitosan (CS, as a positive-charged and antibacterial agent) and dextran sulfate (DS, as a negative-charged and anti-adhesive agent) were successfully prepared using the aminolyzed PTAT membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of as-modified PTAT membranes reached to the steady value after four bilayers of coating, hence suggesting that the full coverage was achieved. It could be found that the PTAT–PEMs membranes with DS as the outmost layer could resist the platelet adhesion and human plasma fibrinogen (HPF) adsorption, thereby prolonging effectively the blood coagulation times. According to L929 fibroblast cell growth inhibition index, the as-prepared PTAT membranes exhibited non-cytotoxic. Overall results demonstrated that such an easy, valid and shape-independent processing should be potential for surface modification of PTAT membrane in the application of hemodialysis devices.  相似文献   

19.
The dynamic moduli of gels filled with particles have been studied as a function of the volume fraction of dispersed particles f (0–0.4) and of the way in which they interact with the gel matrix. Two gels of different nature were studied, viz. polyvinyl alcohol (PVA) — Congo red gels (a so-called rubber gel) and casein gels made by acidification of skimmed milk. Emulsion droplets stabilized by different macromolecules have been used as dispersed particles. If there was no interaction between the macromolecules adsorbed on the particles and the gel matrix, both the filled PVA and the filled casein gels showed a small decrease in the elastic moduli with f , approaching the behaviour theoretically predicted for foams. In the case of interaction, the results for filled PVA gels roughly fitted the theoretical predictions, if the deformability of the emulsion droplets and the formation of an intermediate layer between the dispersed particles and the gel matrix was taken into account. The increase in the elastic moduli of the acid milk gels with f was much greater than expected and was probably due to aggregation of the dispersed particles during gelation.  相似文献   

20.
A multilayer film composed of ferrocene(Fc)-appended poly(allylamine hydrochloride) (Fc-PAH) and poly(potassium vinylsulfate) (PVS) has been prepared on the surface of a gold(Au) electrode by using a layer-by-layer self-assembly technique. Fc-containing polyelectrolyte multilayer (PEM) film-modified electrodes can electrochemically catalyze the oxidation of ascorbic acid successfully. For a 2 (Fc-PAH/PVS) bilayer-covered electrode the catalytic current increased linearly with increasing concentration of ascorbic acid over the concentration range 6 mol L–1–3 mmol L–1. To extend the dynamic range for ascorbic acid, the surface of the Au electrode was first covered with a (PAH/PVS)2 film on which an additional (Fc-PAH/PVS)5 film was coated. This strategy successfully extended the dynamic range of the electrode up to 25 mmol L–1 ascorbic acid, because the (PAH/PVS)2 layer blocked access of ascorbic acid to the electrode surface. The upper detection limit of the (PAH/PVS)2 (Fc-PAH/PVS)5 film-modified electrode is much higher than those of Fc-based ascorbic acid sensors reported so far. Electron transfer is diffusion-controlled within the (PAH/PVS)2(Fc-PAH/PVS)5 film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号