首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this Letter, we discuss the electron acoustic (EA) waves in plasmas, which consist of nonthermal hot electrons featuring the Tsallis distribution, and obtain the corresponding governing equation, that is, a nonlinear Schrödinger (NLS) equation. By means of Modulation Instability (MI) analysis of the EA waves, it is found that both electron acoustic solitary wave and rogue wave can exist in such plasmas. Basing on the Darboux transformation method, we derive the analytical expressions of nonlinear solutions of NLS equations, such as single/double solitary wave solutions and single/double rogue wave solutions. The existential regions and amplitude of solitary wave solutions and the rogue wave solutions are influenced by the nonextensive parameter q and nonthermal parameter α. Moreover, the interaction of solitary wave and how to postpone the excitation of rogue wave are also studied.  相似文献   

2.
We study a nonintegrable discrete nonlinear Schr?dinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term.  相似文献   

3.
We introduce an extended nonlinear Schrödinger (ENLS) equation describing the dynamics of modulated waves in a nonlinear discrete electrical transmission line (NLTL) with nonlinear dispersion. We show that this equation admits envelope dark solitary wave with compact support, with width and speed independent of the amplitude, as a solution. Analytical criteria of existence and stability of this solution are derived. In particular, we show that the modulated compact wave may exist in the NLTL depending on the frequency range of the chosen carrier wave, for physically realistic parameters. The stability of compact dark solitary wave is confirmed by numerical simulations of this ENLS equation and the exact equations of the network.  相似文献   

4.
We numerically investigate the nonlinear waves propagating in a one-dimensional particle chain when the damping effect is taken into account. It is found that decaying solitary waves exist, in which the amplitude of the wave decreases exponentially as time increases. Meanwhile, the velocity of the solitary wave also slows down as time goes. This result implies that the damping coefficient is an important parameter in such a nonlinear system. Theoretical analysis has also been done by the reductive perturbation method. The result indicates that the nonlinear waves propagating in such a system can be described by the damped KdV equation.  相似文献   

5.
殷久利  田立新 《物理学报》2009,58(6):3632-3636
研究一类非线性色散广义DGH方程的新型奇异孤立波及其Painlevé可积性.利用Painlevé分析发现当对流项强度m=2时广义DGH方程是可积的,这是一个新的可积方程.通过构造新的变量代换以及auto-Backlund变换获得该方程丰富的奇异孤立波解,如紧孤立波(compacton)、尖峰孤立波(peakon)、新型带尖点的双孤立波和带爆破点的双孤立波等. 关键词: 非线性色散方程 可积性 奇异孤立波  相似文献   

6.
The existence of "dispersion-managed solitons," i.e., stable pulsating solitary-wave solutions to the nonlinear Schrodinger equation with periodically modulated and sign-variable dispersion is now well known in nonlinear optics. Our purpose here is to investigate whether similar structures exist for other well-known nonlinear wave models. Hence, here we consider as a basic model the variable-coefficient Korteweg-de Vries equation; this has the form of a Korteweg-de Vries equation with a periodically varying third-order dispersion coefficient, that can take both positive and negative values. More generally, this model may be extended to include fifth-order dispersion. Such models may describe, for instance, periodically modulated waveguides for long gravity-capillary waves. We develop an analytical approximation for solitary waves in the weakly nonlinear case, from which it is possible to obtain a reduction to a relatively simple integral equation, which is readily solved numerically. Then, we describe some systematic direct simulations of the full equation, which use the soliton shape produced by the integral equation as an initial condition. These simulations reveal regions of stable and unstable pulsating solitary waves in the corresponding parametric space. Finally, we consider the effects of fifth-order dispersion. (c) 2002 American Institute of Physics.  相似文献   

7.
Possible types of low-frequency electromagnetic solitary waves in a dispersive LC transmission line with a quadratic or cubic capacitive nonlinearity are investigated. The fourth-order nonlinear wave equation with ohmic losses is derived from the differential-difference equations of the discrete line in the continuum approximation. For a zero-loss line, this equation can be reduced to the nonlinear equation for a transmission line, the double dispersion equation, the Boussinesq equations, the Korteweg-de Vries (KdV) equation, and the modified KdV equation. Solitary waves in a transmission line with dispersion and dissipation are considered.  相似文献   

8.
This paper addresses the (2+1)-dimensional cubic-quintic nonlinear Schrödinger equation (CQNLS) that serves as the model to study the light propagation through nonlinear optical media and non-Kerr crystals. A dark–bright optical solitary wave solution of this equation is retrieved by adopting the complex envelope function ansatz. This type of solitary wave describes the properties of bright and dark optical solitary waves in the same expression. The integration naturally lead to a constraint condition placed on the solitary wave parameters which must hold for the solitary waves to exist. Additionally, the modulation instability (MI) analysis of the model is studied based on the standard linear stability analysis and the MI gain spectrum is got. Numerical simulation and physical interpretations of the obtained results are demonstrated. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviors of the CQNLS.  相似文献   

9.
The properties of low frequency (coupled acoustic and drift wave) nonlinear structures including solitary waves and double layers in an inhomogeneous magnetized electron–positron–ion (EPI) nonthermal plasma with density and temperature inhomogeneities are studied in a simplified way. The nonlinear differential equation derived here for the study of double layers in the inhomogeneous EPI plasma resembles with the modified KdV equation in the stationary frame. But the method used for the derivation of nonlinear differential equation is simple and consistent to give both the stationary solitary waves and double layers. Further, the illustrations show that superthermality κ, drift velocity and temperature inhomogeneity have significant effects on the amplitude, width, and existence range of the structures.  相似文献   

10.
We present new type of Dark-in-the-Bright solution also called dipole soliton for the higher order nonlinear Schrödinger (HNLS) equation with non-Kerr nonlinearity under some parametric conditions and subject to constraint relation among the parameters in optical context. This equation could be a model equation of pulse propagation beyond ultrashort range in optical communication systems. The solitary wave solution is composed of the product of bright and dark solitary waves. This type of pulse shape to be formed both the group velocity dispersion and third-order dispersion must be compensated. We also investigated the stability of the solitary wave solution under some initial perturbation on the parametric conditions. We have shown that the shape of pulse remains unchanged up to 20 normalized lengths even under some very small violation in parametric conditions.  相似文献   

11.
Li Z  Li L  Tian H  Zhou G 《Physical review letters》2000,84(18):4096-4099
We present new types of solitary wave solutions for the higher order nonlinear Schrodinger (HNLS) equation describing propagation of femtosecond light pulses in an optical fiber under certain parametric conditions. Unlike the reported solitary wave solutions of the HNLS equation, the novel ones can describe bright and dark solitary wave properties in the same expressions and their amplitude may approach nonzero when the time variable approaches infinity. In addition, such solutions cannot exist in the nonlinear Schrodinger equation. Furthermore, we investigate the stability of these solitary waves under some initial pertubations by employing the numerical simulation methods.  相似文献   

12.
宋健  杨联贵  刘全生 《物理学报》2011,60(10):104701-104701
正压流体中,从有外源的准地转位涡方程出发采用摄动方法和时空伸长变换推导了具有β效应、地形效应和外源的强迫Rossby孤立波包方程,得到孤立Rossby波振幅的演变满足带有地形与外源强迫的非齐次非线性Schrödinger方程的结论. 通过分析孤立Rossby波包振幅的演变,指出了β效应、地形效应以及外源都是诱导Rossby孤立波产生的重要因素,说明了在地形强迫效应和非线性作用相平衡的假定下,Rossby孤立波包振幅的演变满足非齐次非线性Schrödinger 关键词: Rossby波包 β效应')" href="#">β效应 地形 Schrödinger方程  相似文献   

13.
Abstract

We analyze travelling solitary wave solutions in the Barbi-Cocco-Peyrard and in a simplified version of the Cocco-Monasson models of nonlinear DNA dynamics. We identify conditions to be satisfied by parameters for such solutions to exist, and provide first order ODEs whose solutions give the required solitary waves; these are not solvable in analytical terms, but are easily integrated numerically.  相似文献   

14.
The modulational instability of dust ion accoustic waves in a dust plasma with ion-dust collision effects is studied.Using the perturbation method,a modified nonlinear Schroedinger equation contains a damping term that comes from the effect of the ion-dust collision is derived.It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.  相似文献   

15.
《Physics letters. A》2003,280(2-3):226-233
The modulational instability of dust acoustic waves in a dusty plasma with non-adiabatic dust charge fluctuation is studied. Using the perturbation method, a modified nonlinear Schrödinger equation containing a damping term that comes from the effect of dust charge variation is derived. It is found that the modulational instability of the wave packet and the propagation characters of the envelope solitary waves are modified significantly by the non-adiabatic dust charge fluctuation.  相似文献   

16.
In this paper, we obtain exact soliton solutions of the modified KdV equation, inhomogeneous nonlinear Schrödinger equation and G(m, n) equation with variable-coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the solitons to exist. Numerical simulations for dark and bright soliton solutions for the mKdV equation are also given.  相似文献   

17.
Abstract

In this paper, we introduce and study rigorously a Hamiltonian structure and soliton solutions for a weakly dissipative and weakly nonlinear medium that governs two Korteweg–de vries (KdV) wave modes. The bounded solution and traveling wave solution such as cnoidal wave and solitary wave are obtained. Subsequently, the equation is numerically solved by Fourier spectral method for its two-soliton solution. These solutions may be useful to explain the nonlinear dynamics of waves for an equation supporting multi-mode weakly dispersive and nonlinear wave medium. In addition, we give an explicit explanation of the mathematics behind the soliton phenomenon for a better understanding of the equation.  相似文献   

18.
In this paper,we investigate a(2+1)-dimensional nonlinear equation model for Rossby waves in stratified fluids.We derive a forced Zakharov–Kuznetsov(ZK)–Burgers equation from the quasigeostrophic potential vorticity equation with dissipation and topography under the generalized beta effect,and by utilizing temporal and spatial multiple scale transform and the perturbation expansion method.Through the analysis of this model,it is found that the generalized beta effect and basic topography can induce nonlinear waves,and slowly varying topography is an external impact factor for Rossby waves.Additionally,the conservation laws for the mass and energy of solitary waves are analyzed.Eventually,the solitary wave solutions of the forced ZK–Burgers equation are obtained by the simplest equation method as well as the new modified ansatz method.Based on the solitary wave solutions obtained,we discuss the effects of dissipation and slowly varying topography on Rossby solitary waves.  相似文献   

19.
In this Letter, we investigate the perturbed nonlinear Schrödinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.  相似文献   

20.
A theoretical investigation has been made on obliquely propagating ion‐acoustic (IA) solitary structures in a three components magneto‐plasma containing cold inertial ions, Boltzmann distributed positrons, and hot non‐thermal electrons. The Zakharov‐Kuznetsov equation has been derived by the reductive perturbation method, and its solitary wave solution has been analyzed. Multi‐dimensional instability has also studied by the small‐k (long wave‐length plane wave) perturbation expansion technique, which is found to exist in such a plasma. The effects of the external magnetic field, nonthermal electrons, obliqueness and temperature ratio have significantly modified the basic properties of small but finite‐amplitude IA solitary waves, such as amplitude, width, instability criterion and the growth rate. The present investigation contributes to the physics of the nonlinear IA waves in space and laboratory electron‐positron‐ion magneto‐plasmas in which wave damping produces an electron tail. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号