首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative folding is the concomitant formation of the native disulfide bonds and the native tertiary structure from the reduced and unfolded polypeptide. Of interest is the inherent conformational tendency (bias) present in the reduced polypeptide to dictate the formation of the full set of native disulfide bonds. Here, by application of a novel tool, we have been able to assess this "native conformational tendency" present in reduced and unfolded bovine pancreatic ribonuclease A (RNase A). The essence of this method lies in the ability of the oxidant [Pt(en)(2)Cl(2)](2+) (where "en" is ethylenediamine) to oxidize disulfide bonds under conditions in which both reduction and disulfide reshuffling, which are essential for rearranging non-native disulfide bonds, are extremely slow. When applied to RNase A, the method revealed little or no bias toward formation of the full native set of disulfide bonds in the fully reduced protein.  相似文献   

2.
Oxidative folding is a composite process that consists of both the conformational folding to the native three-dimensional structure and the regeneration of the native disulfide bonds of a protein, frequently involving over 100 disulfide intermediate species. Understanding the oxidative folding pathways of a multiple-disulfide-containing protein is a very difficult task that often requires years of devoted research due to the high complexity of the process and the very similar features of the large number of intermediates. Here we developed a method for rapidly delineating the major features of the oxidative folding pathways of a protein. The method examines the temperature dependence of the oxidative folding rate of the protein in combination with reduction pulses. Reduction pulses expose the presence of structured intermediates along the pathways. The correlation between the regeneration rate at different temperatures and the stability of the structured intermediates reveals the role that the intermediates play in determining the pathway. The method was first tested with bovine pancreatic ribonuclease A whose folding pathways were defined earlier. Then, it was explored to discern some of the major features of the folding pathways of its homologue, frog Onconase. The results suggest that the stability of the three-dimensional structure of the native protein is a major determinant of the folding rate in oxidative folding.  相似文献   

3.
During oxidative folding, the formation of disulfide bonds has profound effects on guiding the protein folding pathway. Until now, comparatively little is known about the changes in the conformational dynamics in folding intermediates of proteins that contain only a subset of their native disulfide bonds. In this comprehensive study, we probe the conformational landscape of non-native states of lysozyme containing a single native disulfide bond utilizing nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), circular dichroism (CD) data, and modeling approaches. The impact on conformational dynamics varies widely depending on the loop size of the single disulfide variants and deviates significantly from random coil predictions for both NMR and SAXS data. From these experiments, we conclude that the introduction of single disulfides spanning a large portion of the polypeptide chain shifts the structure and dynamics of hydrophobic core residues of the protein so that these regions exhibit levels of order comparable to the native state on the nanosecond time scale.  相似文献   

4.
A small-molecule catalyst of protein folding in vitro and in vivo   总被引:3,自引:0,他引:3  
BACKGROUND: The formation of native disulfide bonds between cysteine residues often limits the rate and yield of protein folding. The enzyme protein disulfide isomerase (PDI) catalyzes the interchange of disulfide bonds in substrate proteins. The two -Cys-Gly-His-Cys- active sites of PDI provide a thiol that has a low pKa value and a disulfide bond of high reduction potential (Eo'). RESULTS: A synthetic small-molecule dithiol, (+/-)-trans-1,2-bis(2-mercaptoacetamido)cyclohexane (BMC), has a pKa value of 8.3 and an Eo' value of -0.24 V. These values are similar to those of the PDI active sites. BMC catalyzes the activation of scrambled ribonuclease A, an inactive enzyme with non-native disulfide bonds, and doubles the yield of active enzyme. A monothiol analog of BMC, N-methylmercaptoacetamide, is a less efficient catalyst than BMC. BMC in the growth medium of Saccharomyces cerevisiae cells increases by > threefold the heterologous secretion of Schizosaccharomyces pombe acid phosphatase, which has eight disulfide bonds. This effect is similar to that from the overproduction of PDI in the S. cerevisiae cells, indicating that BMC, like PDI, can catalyze protein folding in vivo. CONCLUSIONS: A small-molecule dithiol with a low thiol pKa value and high disulfide Eo' value can mimic PDI by catalyzing the formation of native disulfide bonds in proteins, both in vitro and in vivo.  相似文献   

5.
RNase A, a model protein for oxidative folding studies, has four native disulfide bonds. The roles of des [40-95] and des [65-72], the two native-like structured three-disulfide-bonded intermediates populated between 8 and 25 degrees C during the oxidative folding of RNase A, are well characterized. Recent work focuses on both the formation of these structured disulfide intermediates from their unstructured precursors and on the subsequent oxidation of the structured species to form the native protein. The major obstacles in this work are the very low concentration of the precursor species and the difficulty of isolating some of the structured intermediates. Here, we demonstrate a novel method that enables the native disulfide-bonded intermediates to be populated and studied regardless of whether they have stable structure and/or are present at low concentrations during the oxidative folding or reductive unfolding process. The application of this method enabled us to populate and, in turn, study the key intermediates with two native disulfide bonds on the oxidative folding pathway of RNase A; it also facilitated the isolation of des [58-110] and des [26-84], the other two native-like structured des species whose isolation had thus far not been possible.  相似文献   

6.
The oxidative folding of bovine pancreatic trypsin inhibitor (BPTI) has served as a paradigm for the folding of disulfide-containing proteins from their reduced form, as well as for protein folding in general. Many extracellular proteins and most pharmaceutically important proteins contain disulfide bonds. Under traditional conditions, 0.125 mM glutathione disulfide (GSSG) and no glutathione (GSH), the folding pathway of BPTI proceeds through a nonproductive route via N* (a two disulfide intermediate), or a productive route via N' (and other two disulfide intermediates which are in rapid equilibrium with N'). Both routes have the rearrangement of disulfide bonds as their rate-determining steps. However, the effects of the composition of the redox buffer, GSSG and GSH, on folding has not been extensively investigated. Interestingly, BPTI folds more efficiently in the presence of 5 mM GSSG and 5 mM GSH than it does under traditional conditions. These conditions, which are similar to those found in vivo, result in a doubly mixed disulfide between N' and glutathione, which acts as an oxidative kinetic trap as it has no free thiols. However, with 5 mM GSSG and 5 mM GSH the formation of the double mixed disulfide is compensated for by N* being less kinetically stable and the more rapid conversion of the singly mixed disulfides between N' and glutathione to native protein (N). Thus a major rate-determining step becomes the direct conversion of a singly mixed disulfide to N, a growth-type pathway. Balancing the formation of N* and its stability versus the formation of the doubly mixed disulfide and its stability results in more efficient folding. Such balancing acts may prove to be general for other disulfide-containing proteins.  相似文献   

7.
In live cells, protein folding often cannot occur spontaneously, but requires the participation of helper proteins - molecular chaperones and foldases. The mechanisms employed by chaperones markedly increase the effectiveness of protein folding, but have no bearing on the rate of this process, whereas foldases actually accelerate protein folding by exerting a direct influence on the rate-limiting steps of the overall reaction. Two types of foldases are known, using different principles of action. Peptidyl-prolyl cis/trans isomerase and protein-disulfide isomerase catalyze the folding of every protein that needs isomerization of prolyl peptide bonds or formation and isomerization of disulfide bonds for proper folding. By contrast, some foldases operating in the periplasm of bacterial cells are specifically designed to help in the folding of substrate proteins whose primary structure does not contain sufficient information for correct folding. In this review, we discuss recent data on the catalytic mechanisms of both types of foldases, focusing specifically on how a catalyst provides the structural information required for the folding of a target protein. Comparative analysis of the mechanisms employed by two different periplasmic foldases is used to substantiate the notion that combinations of a protein which is unable to fold independently and a specific catalyst delivering the necessary steric information are probably designed to achieve some particular biological purposes. The review also covers the problem of participation of peptidyl-prolyl cis/trans isomerase in different cellular functions, highlighting the role of this enzyme in conformational rearrangements of folded native proteins.  相似文献   

8.
One challenge in protein refolding is to dissociate the non-native disulfide bonds and promote the formation of native ones. In this study, we present a coarse-grained off-lattice model protein containing disulfide bonds and simulate disulfide bond shuffling during the folding of this model protein. Introduction of disulfide bonds in the model protein led to enhanced conformational stability but reduced foldability in comparison to counterpart protein without disulfide bonds. The folding trajectory suggested that the model protein retained the two-step folding mechanism in terms of hydrophobic collapse and structural rearrangement. The disulfide bonds located in the hydrophobic core were formed before the collapsing step, while the bonds located on the protein surface were formed during the rearrangement step. While a reductive environment at the initial stage of folding favored the formation of native disulfide bonds in the hydrophobic core, an oxidative environment at a later stage of folding was required for the formation of disulfide bonds at protein surface. Appling a dynamic redox environment, that is, one that changes from reductive to oxidative, intensified disulfide bond shuffling and thus resulted in improved recovery of the native conformation. The above-mentioned simulation was experimentally validated by refolding hen-egg lysozyme at different urea concentrations and oxidized glutathione/reduced glutathione (GSSG/GSH) ratios, and an optimal redox environment, in terms of the GSSG to GSH ratio, was identified. The implementation of a dynamic redox environment by tuning the GSSG/GSH ratio further improved the refolding yield of lysozyme, as predicted by molecular simulation.  相似文献   

9.
The folding of disulfide containing proteins from denatured protein to native protein involves numerous thiol-disulfide interchange reactions. Many of these reactions include a redox buffer, which is a mixture of a thiol (RSH) and the corresponding disulfide (RSSR). The relationship between the structure of RSH and its efficacy in folding proteins in vitro has been investigated only to a limited extent. Reported herein are the effects of aliphatic and especially aromatic thiols on reactions that occur during protein folding. Aromatic thiols may be particularly efficacious as their thiol pK(a) values and reactivities match those of the in vivo catalyst, protein disulfide isomerase (PDI). This investigation correlates the thiol pK(a) values of aromatic thiols with their reactivities toward small molecule disulfides and the protein insulin. The thiol pK(a) values of nine para-substituted aromatic thiols were measured; a Hammett plot constructed using sigma(p-) values yielded rho = -1.6 +/- 0.1. The reactivities of aromatic and aliphatic thiols with 2-pyridyldithioethanol (2-PDE), a small molecule disulfide, were determined. A plot of reactivity versus pK(a) of the aromatic thiols had a slope (beta) of 0.9. The ability of these thiols to reduce (unfold) the protein insulin correlates strongly with their ability to reduce 2-PDE. Since the reduction of protein disulfides occurs during protein folding to remove mismatched disulfides, aromatic thiols with high pK(a) values are expected to increase the rate not only of protein unfolding but protein folding as well.  相似文献   

10.
11.
The first part of this paper contains an overview of protein structures, their spontaneous formation ("folding"), and the thermodynamic and kinetic aspects of this phenomenon, as revealed by in vitro experiments. It is stressed that universal features of folding are observed near the point of thermodynamic equilibrium between the native and denatured states of the protein. Here the "two-state" ("denatured state" <--> "native state") transition proceeds without accumulation of metastable intermediates, but includes only the unstable "transition state". This state, which is the most unstable in the folding pathway, and its structured core (a "nucleus") are distinguished by their essential influence on the folding/unfolding kinetics. In the second part of the paper, a theory of protein folding rates and related phenomena is presented. First, it is shown that the protein size determines the range of a protein's folding rates in the vicinity of the point of thermodynamic equilibrium between the native and denatured states of the protein. Then, we present methods for calculating folding and unfolding rates of globular proteins from their sizes, stabilities and either 3D structures or amino acid sequences. Finally, we show that the same theory outlines the location of the protein folding nucleus (i.e., the structured part of the transition state) in reasonable agreement with experimental data.  相似文献   

12.
The cooperative folding and unfolding of a beta-hairpin structure are observed in explicit water at native folding conditions through self-guided molecular dynamics simulation. The folded structure agrees excellently with the NMR NOE data. After going through a fully hydrated state, the peptide folds into a beta-hairpin structure in a highly cooperative process. During the folding process it is observed that side chain interaction occurs first, while intrapeptide hydrogen bonds only form at the final stage. On the contrary, the unfolding process starts with the breaking of interstrand hydrogen bonds. Energetic analysis indicates that the driving force of the folding is the intrapeptide interaction, while the solvent interaction opposes the folding.  相似文献   

13.
Distributed computing has been implemented to the solution structure determination of endothelin-1 to evaluate efficiency of the method for NMR constraint-based structure calculations. A key target of the investigation was determination of the C-terminal folding of the peptide, which had been dispersed in previous studies of NMR, despite its pharmacological significances. With use of tens of thousands of random initial structures to explore the conformational space comprehensively, we determined high-resolution structures with good convergences of C-terminal as well as previously defined N-terminal structures. The previous studies had missed the C-terminal convergence because of initial structure dependencies trapped in localized folding of the N-terminal region, which are strongly constricted by two disulfide bonds.  相似文献   

14.
The conformational samplings are indispensible for obtaining reliable canonical ensembles, which provide statistical averages of physical quantities such as free energies. However, the samplings of vast conformational space of biomacromolecules by conventional molecular dynamics (MD) simulations might be insufficient, due to their inadequate accessible time‐scales for investigating biological functions. Therefore, the development of methodologies for enhancing the conformational sampling of biomacromolecules still remains as a challenging issue in computational biology. To tackle this problem, we newly propose an efficient conformational search method, which is referred as TaBoo SeArch (TBSA) algorithm. In TBSA, an inverse energy histogram is used to select seeds for the conformational resampling so that states with high frequencies are inhibited, while states with low frequencies are efficiently sampled to explore the unvisited conformational space. As a demonstration, TBSA was applied to the folding of a mini‐protein, chignolin, and automatically sampled the native structure (Cα root mean square deviation < 1.0 Å) with nanosecond order computational costs started from a completely extended structure, although a long‐time 1‐µs normal MD simulation failed to sample the native structure. Furthermore, a multiscale free energy landscape method based on the conformational sampling of TBSA were quantitatively evaluated through free energy calculations with both implicit and explicit solvent models, which enable us to find several metastable states on the folding landscape. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
We have designed a model lattice protein that has two stable folded states, the lower free energy native state and a latent state of somewhat higher energy. The two states have a sizable part of their structures in common (two "alpha-helices") and differ in the content of "alpha-helices" and "beta-strands" in the rest of their structures; i.e. for the native state, this part is alpha-helical, and for the latent state it is composed of beta-strands. Thus, the lattice protein free energy surface mimics that of amyloidogenic proteins that form well organized fibrils under appropriate conditions. A Go-like potential was used and the folding process was simulated with a Monte Carlo method. To gain insight into the equilibrium free energy surface and the folding kinetics, we have combined standard approaches (reduced free energy surfaces, contact maps, time-dependent populations of the characteristic states, and folding time distributions) with a new approach. The latter is based on a principal coordinate analysis of the entire set of contacts, which makes possible the introduction of unbiased reaction coordinates and the construction of a kinetic network for the folding process. The system is found to have four characteristic basins, namely a semicompact globule, an on-pathway intermediate (the bifurcation basin), and the native and latent states. The bifurcation basin is shallow and consists of the structure common to the native and latent states, with the rest disorganized. On the basis of the simulation results, a simple kinetic model describing the transitions between the characteristic states was developed, and the rate constants for the essential transitions were estimated. During the folding process the system dwells in the bifurcation basin for a relatively short time before it proceeds to the native or latent state. We suggest that such a bifurcation may occur generally for proteins in which native and latent states have a sizable part of their structures in common. Moreover, there is the possibility of introducing changes in the system (e.g., mutations), which guide the system toward the native or misfolded state.  相似文献   

16.
It is an experimental fact that gross topological parameters of the native structure of small proteins presenting two-state kinetics, as relative contact order chi, correlate with the logarithm of their respective folding rate constant kappa(f). However, reported results show specific cases for which the (chi,log kappa(f)) dependence does not follow the overall trend of the entire collection of experimental data. Therefore, an interesting point to be clarified is to what extent the native topology alone can explain these exceptional data. In this work, the structural determinants of the folding kinetics are investigated by means of a 27-mer lattice model, in that each native is represented by a compact self-avoiding (CSA) configuration. The hydrophobic effect and steric constraints are taken as basic ingredients of the folding mechanism, and each CSA configuration is characterized according to its composition of specific patterns (resembling basic structural elements such as loops, sheets, and helices). Our results suggest that (i) folding rate constants are largely influenced by topological details of the native structure, as configurational pattern types and their combinations, and (ii) global parameters, as the relative contact order, may not be effective to detect them. Distinct pattern types and their combinations are determinants of what we call here the "content of secondary-type" structure (sigma) of the native: high sigma implies a large kappa(f). The largest part of all CSA configurations presents a mix of distinct structural patterns, which determine the chixlog kappa(f) linear dependence: Those structures not presenting a proper chi-dependent balance of patterns have their folding kinetics affected with respect to the pretense linear correlation between chi and log kappa(f). The basic physical mechanism relating sigma and kappa(f) involves the concept of cooperativity: If the native is composed of patterns producing a spatial order rich in effective short-range contacts, a properly designed sequence undertakes a fast folding process. On the other hand, the presence of some structural patterns, such as long loops, may reduce substantially the folding performance. This fact is illustrated through natives having a very similar topology but presenting a distinct folding rate kappa(f), and by analyzing structures having the same chi but different sigma.  相似文献   

17.
The master equation that describes the kinetics of protein folding is solved numerically for a portion of Staphylococcal Protein A by a Laplace transformation. The calculations are carried out with 50 local-minimum conformations belonging to two conformational families. The master equation allows for transitions among all the 50 conformations in the evolution toward the final folded equilibrium distribution of conformations. It is concluded that the native protein folds in a fast cooperative process. The global energy minimum of a native protein can be reached after a sufficiently long folding time regardless of the initial state and the existence of a large number of local energy minima. Conformations representing non-native states of the protein can transform to the native state even if they do not belong to the native conformational family. Given a starting conformation, the protein molecule can fold to its final conformation through different paths. Finally, when the folding reaches the equilibrium distribution, the protein molecule adopts a set of conformations in which the global minimum has the largest average probability.  相似文献   

18.
The N-glycosylation of proteins is generated at the consensus sequence NXS/T (where X is any amino acid except proline) by the biosynthetic process, and occurs in the endoplasmic reticulum and Golgi apparatus. In order to investigate the influence of human complex-type oligosaccharides on counterpart protein conformation, crambin and ovomucoide, which consist of 46 and 56 amino acid residues, respectively, were selected for synthesis of model glycoproteins. These small glycoproteins were intentionally designed to be glycosylated at the α-helix (crambin: 8?position), β-sheet (crambin: 2?position) and loop position between the antiparallel β-sheets (ovomucoide: 28?position), and were synthesized by using a peptide-segment coupling strategy. After preparation of these glycosylated polypeptide chains, protein folding experiments were performed under redox conditions by using cysteine-cystine. Although the small glycoproteins bearing intentional glycosylation at the α-helix and β-sheet exhibited a suitable folding process, glycosylation at the loop position between the antiparallel β-strands caused multiple products. The conformational differences in the isolated homogeneous glycoproteins compared with non-glycosylated counterparts were evaluated by circular dichroism (CD) and NMR spectroscopy. These analyses suggested that this intentional N-glycosylation did not result in large conformational changes in the purified protein structures, including the case of glycosylation at the loop position between the antiparallel β-strands. In addition to these experiments, the conformational properties of three glycoproteins were evaluated by CD spectroscopy under different temperatures. The oligosaccharides on the protein surface fluctuated considerably; this was dependent on the increase in the solution temperature and was thought to disrupt the protein tertiary structure. Based on the measurement of the CD spectra, however, the glycoproteins bearing three disulfide bonds did not exhibit any change in their protein tertiary structure. These results suggest that the oligosaccharide conformational fluctuations were not disruptive to protein tertiary structure, and the tertiary structure of glycoproteins might be stabilized by the disulfide bond network.  相似文献   

19.
Closely related to the "protein folding problem" is the issue of protein misfolding and aggregation. Protein aggregation has been associated with the pathologies of nearly 20 human diseases and presents serious difficulties during the manufacture of pharmaceutical proteins. Computational studies of multiprotein systems have recently emerged as a powerful complement to experimental efforts aimed at understanding the mechanisms of protein aggregation. We describe the thermodynamics of systems containing two lattice-model 64-mers. A parallel tempering algorithm abates problems associated with glassy systems and the weighted histogram analysis method improves statistical quality. The presence of a second chain has a substantial effect on single-chain conformational preferences. The melting temperature is substantially reduced, and the increase in the population of unfolded states is correlated with an increase in interactions between chains. The transition from two native chains to a non-native aggregate is entropically favorable. Non-native aggregates receive approximately 25% of their stabilizing energy from intraprotein contacts not found in the lowest-energy structure. Contact maps show that for non-native dimers, nearly 50% of the most probable interprotein contacts involve pairs of residues that form native contacts, suggesting that a domain-swapping mechanism is involved in self-association.  相似文献   

20.
Several all-helical single-domain proteins have been shown to fold rapidly (microsecond time scale) to a compact intermediate state and subsequently rearrange more slowly to the native conformation. An understanding of this process has been hindered by difficulties in experimental studies of intermediates in cases where they are both low-populated and only transiently formed. One such example is provided by the on-pathway folding intermediate of the small four-helix bundle FF domain from HYPA/FBP11 that is populated at several percent with a millisecond lifetime at room temperature. Here we have studied the L24A mutant that has been shown previously to form nonnative interactions in the folding transition state. A suite of Carr-Purcell-Meiboom-Gill relaxation dispersion NMR experiments have been used to measure backbone chemical shifts and amide bond vector orientations of the invisible folding intermediate that form the input restraints in calculations of atomic resolution models of its structure. Despite the fact that the intermediate structure has many features that are similar to that of the native state, a set of nonnative contacts is observed that is even more extensive than noted previously for the wild-type (WT) folding intermediate. Such nonnative interactions, which must be broken prior to adoption of the native conformation, explain why the transition from the intermediate state to the native conformer (millisecond time scale) is significantly slower than from the unfolded ensemble to the intermediate and why the L24A mutant folds more slowly than the WT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号