首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
In this paper, large eddy simulation (LES) of a three-dimensional turbulent lid-driven cavity (LDC) flow at Re = 10,000 has been performed using the multiple relaxation time lattice Boltzmann method. A Smagorinsky eddy viscosity model was used to represent the sub-grid scale stresses with appropriate wall damping. The prediction for the flow field was first validated by comparing the velocity profiles with previous experimental and LES studies, and then subsequently used to investigate the large-scale three-dimensional vortical structures in the LDC flow. The instantaneous three-dimensional coherent structures inside the cavity were visualised using the second invariant (Q), Δ criterion, λ2 criterion, swirling strength (λci) and streamwise vorticity. The vortex structures obtained using the different criteria in general agree well with each other. However, a cleaner visualisation of the large vortex structures was achieved with the λci criterion and also when the visualisation is based on the vortex identification criteria expressed in terms of the swirling strength parameters. A major objective of the study was to perform a three-dimensional proper orthogonal decomposition (POD) on the fluctuating velocity fields. The higher energy POD modes efficiently extracted the large-scale vortical structures within the flow which were then visualised with the swirling strength criterion. Reconstruction of the instantaneous fluctuating velocity field using a finite number of POD modes indicated that the large-scale vortex structures did effectively approximate the large-scale motion. However, such a reduced order reconstruction of the flow based on the large-scale vortical structures was clearly not as effective in predicting the small-scale details of the fluctuating velocity field which relate to the turbulent transport.  相似文献   

2.
Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.  相似文献   

3.
The turbulent wake behind a curved circular cylinder is investigated based on data obtained from a direct numerical simulation. Here, emphasis is placed in the assessment of two approaches for simplified modelling: reduced-order modelling (ROM) and Reynolds-averaged Navier–Stokes equations. To this end, the instantaneous vortical structures, the proper orthogonal decomposition (POD) of the flow, and relevant Reynolds stress components have been analysed. The results show that despite the complexity of the instantaneous vortical structures, the wake dynamics are governed by the quasi-periodic shedding of primary vortices. Between 24% and 50% of the kinetic energy in the POD is captured by the two most energetic modes, and about 200 modes are needed to capture 90% of the kinetic energy. These findings suggest that, as long as the large-scale structures of the von Kármán vortex shedding are concerned, the present case can be approached by ROM; but a detailed representation of the flow dynamics without an eddy viscosity model that accounts for the unresolved turbulent fluctuations would require a large amount of degrees of freedom. Concerning the Reynolds stresses, their magnitude varies considerably depending on the depth at which they have been sampled. This dependence is related to the strength of the vortex shedding, and the intensity of the secondary flows induced by the curvature of the cylinder. As a consequence of the combination of these two effects, the correlation between streamwise and vertical velocity fluctuations is highest in the wake behind the midspan of the curved cylinder, and the correlation between cross-flow and vertical velocity fluctuations reaches large values in the lower wake.  相似文献   

4.
An experimental study was conducted to investigate the effects of relative rotation direction on the wake interferences among two tandemwind turbines models.While the oncoming flow conditions were kept in constant during the experiments,turbine power outputs,wind loads acting on the turbines,and wake characteristics behind the turbines were compared quantitatively with turbine models in either co-rotating or counter-rotating configuration.The measurement results reveal that the turbines in counter-rotating would harvest more wind energy from the same oncoming wind,compared with the co-rotating case.While the recovery of the streamwise velocity deficits in the wake flows was found to be almost identical with the turbines operated in either co-rotating or counter-rotating,the significant azimuthal velocity generated in the wake flow behind the upstream turbine is believed to be the reason why the counter-rotating turbines would have a better power production performance.Since the azimuthal flow velocity in the wake flow was found to decrease monotonically with the increasing downstream distance,the benefits of the counter-rotating configuration were found to decrease gradually as the spacing between the tandem turbines increases.While the counter-rotating downstream turbine was found to produce up to 20%more power compared with that of co-rotating configuration with the turbine spacing being about 0.7D,the advantage was found to become almost negligible when the turbine spacing becomes greater than 6.5D.It suggests that the counter-rotating configuration design would be more beneficial to turbines in onshore wind farms due to the smaller turbine spacing(i.e.,~3 rotor diameters for onshore wind farms vs.~7 rotor diameters for offshore wind farms in the prevailing wind direction),especially for those turbines sited over complex terrains with the turbine spacing only about 1–2 rotor diameters.  相似文献   

5.
Vortex identification techniques are used to analyse the wake of a 4 × 3 array of model wind turbines. The Q-criterion, Δ-criterion, and λ2-criterion are applied to particle image velocimetry data gathered fore and aft of the last row centerline turbine. The Q-criterion and λ2-criterion provide a clear indication of regions where vortical activity exists, while the Δ-criterion is not successful. Galilean decomposition, Reynolds decomposition, vorticity, and swirling strength are used to further understand the location and behaviour of the vortices. The techniques identify and display the high-magnitude vortices in high-shear zones resulting from the blade tips. Using Galilean and Reynolds decomposition, swirling motions are shown encapsuling vortex regions in agreement with the identification criteria. The Galilean decompositions selected are 20% and 50% of a convective velocity of 7 m/s. As the vortices convect downstream, the strength of the vortices decreases in magnitude, particularly in the far wake of the array, to approximately 25% of those present in the near wake. A high level of vortex activity is visualised as a result of the top tip of the wind turbine blade -- the location where the highest vertical entrainment is present. Analysing the full frame set, the Q-criterion, λ2-criterion, and swirling strength prove comparable, while the Δ-criterion under-performs in regions of high turbulence activity, namely in the back of the turbine. Entraining flow into the turbine canopy interacting with the turbine generates high-magnitude vortices concentrated at the blade tips. The count of vortices decreases when moving from the top tip down to the wall, as well as their strength for each Galilean technique when a non-zero threshold is applied. Vortex sizes in the near wake are found comparable to turbine blade, hub, and mast dimensions. In the far wake, the resulting size of the vortices is approximately 30% of those in the near wake. These vortices increase in velocity as they convect downstream, following the mean velocity behaviour. The lowest magnitude vortices reside at the hub height in the near-wake region, where they convect at nearly half the speed of those at the blade tips.  相似文献   

6.
针对传统CFD数值计算方法难以实现风力机动态旋转及其旋转状态下的流固耦合计算,本文结合格子玻尔兹曼(LBM)方法易于处理动态复杂边界的特点及大涡模拟(LES)方法在非稳态涡流结构捕捉上的优势,采用LBM-LES联合方法进行三维风力发电机整机气动性能及尾流结构仿真研究,同时采用尺度自适应方法对尾涡结构进行跟踪和精细化计算。针对NREL PhaseⅥ型试验机进行模拟,得到了与实验结果吻合的流动形态及尾流结构演变规律,分析了尾流区速度演变规律并对比了不同亚格子湍流模型对计算结果的影响.  相似文献   

7.
A novel methodology is developed to decompose the classic Flame Transfer Function (FTF) used in the thermo-acoustic stability analysis of lean premix combustors into contributions of different types. The approach is applied, in the context of Large Eddy Simulation (LES), to partially-premixed and fully-premixed flames, which are stabilized via a central recirculation zone as a result of the vortex breakdown phenomenon. The first type of decomposition is into contributions driven by fuel mixture fraction and dynamic velocity fluctuations. Each of these two contributions is further split into the components of turbulent flame speed and flame surface area. The flame surface area component, driven by the pure dynamic velocity fluctuation, which is shown to be a dominant contribution to the overall FTF, is also additionally decomposed over the coherent flow structures using proper orthogonal decomposition. Using a simplified model for the dynamic response of premixed flames, it is shown that the distribution of the FTF, as obtained from LES, is closely related to the characteristics of the velocity field frequency response to the inlet perturbation. Initially, the proposed method is tested and validated with a well characterized laboratory burner geometry. Subsequently, the method is applied to an industrial gas turbine burner.  相似文献   

8.
The effects of different filtering strategies on the statistical properties of the resolved-to-subfilter scale (SFS) energy transfer are analysed in forced homogeneous and isotropic turbulence. We carry out a-priori analyses of the statistical characteristics of SFS energy transfer by filtering data obtained from direct numerical simulations with up to 20483 grid points as a function of the filter cutoff scale. In order to quantify the dependence of extreme events and anomalous scaling on the filter, we compare a sharp Fourier Galerkin projector, a Gaussian filter and a novel class of Galerkin projectors with non-sharp spectral filter profiles. Of interest is the importance of Galilean invariance and we confirm that local SFS energy transfer displays intermittency scaling in both skewness and flatness as a function of the cutoff scale. Furthermore, we quantify the robustness of scaling as a function of the filtering type.  相似文献   

9.
彭哲  靖旭  侯再红  吴毅 《物理学报》2017,66(10):104207-104207
根据Rytov近似以及泰勒湍流冻结假设,推导出以不同距离的前向散射光为信标的水平路径上梯度倾斜角的相关表达式.基于该表达式,在理论上提出了计算湍流强度与横向风速的新方法,并通过数值仿真对该方法进行了初步验证.结果表明,在5%高斯误差情况下,大气折射结构常数和风速的计算结果与理论真值在整体变化上具有较好的一致性,线性相关系数分别能达到0.8与0.9.该方法能够得到不同湍流与风速条件下的湍流强度廓线以及风速廓线,为反演大气湍流强度以及风速提供了一种新思路.  相似文献   

10.
A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号