首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
负极材料Li_4Ti_5O_(12)的蔗糖改性研究   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用固相法合成了C改性的Li4Ti5O12材料.XRD衍射分析表明,C的引入没有改变Li4Ti5O12的尖晶石结构,且缓解了颗粒间的团聚,并以初始蔗糖含量为10%(by mass)样品的电化学性能最佳.0.2C放电倍率下首次放电比容量达179.1 mAh/g,在2C和3C倍率下首次放电比容量仍达143.8 mAh/g和129.4 mAh/g.循环伏安和电化学阻抗测试显示改性后的Li4Ti5O12材料电极极化程度较小,并且具有较小的电极反应阻抗.  相似文献   

2.
张欢  其鲁  高学平  杨坤  张鼎 《无机化学学报》2010,26(9):1539-1543
用钛酸纳米管和LiOH溶液进行离子交换法得到了水合钛酸锂前驱体,进而在不同温度热处理制备了Li4Ti5O12。通过X射线衍射(XRD)、扫描电镜(SEM)、热分析(TG-DSC)和恒电流充放电测试对反应产物进行了研究。结果表明所得前驱体在500~700℃热处理可得到纳米结构的纯相Li4Ti5O12。所得Li4Ti5O12的可逆容量约为160mAh·g-1,循环稳定性随热处理温度的提高而增强,并因具有较短的锂离子扩散距离表现出极佳的倍率性能,在1600mA·g-1(约10C)的电流密度下放电下还保持140mAh·g-1的容量。  相似文献   

3.
本文以醋酸锂和钛酸丁酯为原料,以冰醋酸为抑制剂,采用溶胶-凝胶法制备了晶态Li4Ti5O12负极材料。与自制的3种电解液和实验室常用的电解液分别组装成锂/钛酸锂半电池。采用恒流充放电测试、循环伏安法(CV)及交流阻抗法(EIS)对其电化学性能进行研究。研究结果发现:在以环状碳酸酯类(EC、PC)和线性碳酸酯类(MEC)为溶剂、以六氟磷酸锂(LiPF6)为电解质的电解液中添加双乙二酸硼酸锂(LiBOB),有利于提高半电池的性能,首次放电比电容达到了198mA.h.g-1,且放电比电容经多次充放电后衰减得较小。而在电解液中加入碳酸亚乙烯酯(VC),半电池的性能有所下降。Li4Ti5O12对电解液表现出较明显的兼容性。  相似文献   

4.
应用改进固相合成法制备亚微米Li4Ti5O12锂离子电池材料.X射线衍射(XRD)、扫描电镜(SEM)和激光粒度分析分别显示:物相单一且粒度均匀,D50为0.886μm,属于亚微米级材料.合适的粒度和分布使得该材料展示出优良的电化学性能,以其装配的半电池中,0.1C首次放电容量为165 mAh/g,5C时放电容量可达107 mAh/g,10C时仍可达到54 mAh/g.  相似文献   

5.
以TiO2和Li2CO3分别作为钛源和锂源,聚苯胺(PANI)作为碳源和氮源,通过球磨辅助高温固相法合成N掺杂C包覆Li4Ti5O12.通过X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、元素分析仪(EA)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等对材料的结构和形貌进行了表征,并将合成材料制成电极片组装成扣式电池,测试其电化学性能.结果显示,钛源的处理对样品的性能有影响,通过对TiO2预包覆合成的N掺杂C包覆Li4Ti5O12具有优异的电化学性能,在碳、氮源的包覆比例(PANI与Li4Ti5O12的质量比)为5%时效果最佳:1C放电时其比容量为157.6mA·h/g,20C放电时其比容量仍可达到119.6mA·h/g;在10C充放电循环100次后,其比容量保持率为97.8%,表明N掺杂C包覆Li4Ti5O12具有优异的倍率性能和循环稳定性.  相似文献   

6.
锂离子电池负极材料Li_(4-x)K_xTi_5O_(12)结构和电化学性能   总被引:1,自引:0,他引:1  
采用固相反应的方法制备了尖晶石型Li4Ti5O12和K掺杂Li4-xKxTi5O12(x=0.02,0.04,0.06)。通过XRD、SEM、BET等对制备材料进行了分析。结果表明,K掺杂没有影响立方尖晶石型Li4Ti5O12的合成,同时也没有改变Li4Ti5O12的电化学反应过程。K掺杂Li4-xKxTi5O12具有比Li4Ti5O12小的颗粒粒径和比Li4Ti5O12大的比表面积、孔容积。适量的K掺杂能够明显改善Li4Ti5O12的电化学性能,尤其是倍率性能,但是过多的K掺杂却不利于材料电化学性能的提高。研究表明,Li3.96K0.04Ti5O12体现了相对较好的倍率性能和循环稳定性。0.5C下,首次放电比容量为161mAh·g-1,3.0和5.0C下,容量保持分别为138和121mAh·g-1。3.0C下,200次循环后容量保持为137mAh·g-1。  相似文献   

7.
Li_4Ti_5O_(12)纳米片的合成及储锂性能研究   总被引:2,自引:0,他引:2  
以无定形的水合二氧化钛为前驱物,水热法合成了200~400nm大小的Li4Ti5O12纳米片作为锂离子电池负极材料.XRD(X射线衍射)、SEM(扫描电子显微镜)和TEM(透射电镜)分析表征样品的物相结构、表观形貌;循环伏安、充放电循环和电化学交流阻抗技术分别测定该纳米Li4Ti5O12在有机电解液和室温离子液体S114TFSI电解液中的电化学性能.结果表明,该材料具有较高的放电容量和良好的循环性能,有望成为锂二次电池新型负极材料.  相似文献   

8.
以Li_2CO_3,TiO_2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li_4Ti_5O_(12)/C复合负极材料.并将之与AgNO_3复合,采用固相方法制备出了Ag表面修饰的Li_4Ti_5O_(12)(AG+C)复合材料.采用XRD、SEM和TEM测试方法对材料的微结构进行了表征.结果表明,C的存在对Ag单质在Li_4Ti_5O_(12)/C颗粒表面的大量形成起到了积极的促进作用.从而很大程度地提高了Li_4Ti_5O_(12)/C的电导率,因此有效地改善了其电化学性能.在1C倍率下,Li_4Ti_5O_(12)/(Ag+C)复合材料的首次放电容量达到了164 mAh·g(-1).  相似文献   

9.
以商业微米级锰酸锂(Li Mn2O4)为正极、钛酸锂(Li4Ti5O12)为负极,分别与商业活性炭(AC)复合,组装成软包装电池电容样品并进行电化学测试。测试结果表明,当样品正负极均复合AC时,其电化学性能要优于只有正极复合AC和未复合AC的样品。其中,正负极AC复合比例为5(wt)%,负极与正极的理论容量比(N/P)为1.01时,电池电容样品拥有良好的倍率性能,且其在0.5C时的放电比容量为56.4m Ah/g,5C时的容量保持率为0.5C的72.2%。此外,与未复合AC的样品相比,单体在5C倍率下经2000次循环后的容量保持率仍有77.5%,远高于前者的30.4%。  相似文献   

10.
以乙酰丙酮(ACAC)为螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5Ol2/TiN材料.考察了TiN膜对尖晶石型Li4Ti5Ol2锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5Ol2/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5Ol2锂离子电池负极材料的电化学性能.  相似文献   

11.
将钛酸四丁酯和氧化石墨超声分散于叔丁醇,微波辐射下加入醋酸锂溶液制备尖晶石Li4Ti5O12(LTO)前驱体/氧化石墨烯。一方面,微波作用促进了钛酸四丁酯水解,前驱体的形成能在15 min内完成。另一方面,叔丁醇的"软模板"限域作用导致形成粒子极小且形貌单一的LTO前驱体。同时,细小的LTO前驱体粒子通过二次团聚将氧化石墨烯纳米片完全包埋。最后,LTO前驱体/氧化石墨烯在800℃下煅烧8 h得到尖晶石LTO@石墨烯(LTO@G)。研究表明,LTO@G晶体尺寸在0.2~1.5μm之间,其振实密度达到1.7 g·cm-3。石墨烯位于晶体内部,并显著提高了材料的电子传导性。LTO@G的电导率为1.84×10-3 S·m-1,远高于纯相LTO(1.1×10-7 S·m-1)。1C和4C下,LTO@G首次充放电容量分别是170.1和97.5 m Ah·g-1。可见,LTO@G具有高倍率性能和振实密度,可广泛应用于各种商品锂离子电池。  相似文献   

12.
主要合成了具有尖晶石结构的Li4Ti5O12亚微米球电极材料,并研究了其作为锂离子电池负极材料的电化学性能.材料的制备分为三个步骤:TiCl4水解得到金红石相的TiO2,然后将得到的TiO2与LiOH进行水热反应得到中间相LiTi2O4+δ,最后将中间相高温煅烧得到尖晶石结构的Li4Ti5O12.采用XRD、SEM和TEM等手段对材料的结构和形貌进行表征.结果表明,尖晶石相的Li4Ti5O12负极材料具有分级结构,是由20~30nm的小颗粒堆积成约为200~300nm的亚微米球.将制备的Li4Ti5O12材料进行恒电流充放电测试表明,材料具有优异的倍率放电性能和较好的循环可逆性;在1C充放电时,首次放电比容量达到174.3mAh/g,在第5~50次循环过程中仅有微小的不可逆容量损失.采用循环伏安法测得Li+的扩散系数为1.03×10-7cm2/s.研究表明合成的Li4Ti5O12亚微米球在高效可充电锂离子电池中具有良好的应用前景.  相似文献   

13.
钛基层状氧化物因具有较低的成本、较好的空气稳定性和循环稳定性,以及较高的安全性等优点,被认为是一种具有潜在应用价值的室温钠离子电池负极材料。本文使用固相法首次设计并合成了一种新型P2相Na_(0.65)Li_(0.13)Mg_(0.13)Ti_(0.74)O_2电极材料。通过延长烧结时间,可以制得混有正交相的样品,进一步研究发现该混合相样品具有更加优异的储钠性能。混合相样品首周可逆容量为96.3 m Ah·g~(-1),而纯P2相仅为85.1 m Ah·g~(-1);在1C倍率下循环400周的容量保持率为89.7%,高于P2相的84.4%,并且倍率性能显著提升(混合相样品56.6 m Ah·g~(-1)/5C vs.纯P2相样品47.1m Ah·g~(-1)/2C)。该研究发现共生的两种结构能够提高材料的离子、电子传导,进而可以改善材料充放电过程中离子、电荷分布的均一性,从而提升材料的循环性能。该研究成果有助于拓展其他层状氧化物材料的研究思路,为提高钠离子电池的能量密度和循环性能提供了可行方法。  相似文献   

14.
对锂离子交换体前驱体Li1.5Ti1.625O4的造粒、改型及改型后的锂离子交换体H1.5Ti1.625O4用于油田咸水中微量锂的提取进行了实验室研究。结果表明,锂离子交换体H1.5Ti1.625O4对油田咸水中微量锂离子有很好的记忆性交换,有效交换容量达11.54mg/g,对锂离子表现出良好的离子筛效应。  相似文献   

15.
Li4Ti5O12具有充放电循环性能好、电压平台平稳、安全性高、价格低、环境友好、易于制备等优点,在锂离子电池负极材料中得到广泛研究.本文基于国内外近期的研究进展,综述了制备Li4Ti5O12的方法,着重介绍了固相、溶胶一凝胶、熔盐、燃烧、喷雾、水/溶剂热等几种主要的合成方法,并针对Li4Ti5O12电导率低的缺点,详...  相似文献   

16.
采用水热法合成球形钛酸铋复合氧化物光催化剂,利用SEM、XRD和UV-Vis DRS等表征手段对复合氧化物的晶体结构、微观形貌和光学性能进行了分析,结果表明,制备的钛酸铋复合氧化物为10 nm的球形颗粒,具有良好的晶型结构,禁带宽度为2.7 nm,有较好的可见光吸收能力。以亚甲基蓝、甲基橙及酸性品红为目标污染物,研究了复合氧化物在可见光下的光催化降解有机污染物的性能,并对光催化降解机理进行了探讨。结果表明,在可见光照射下,该复合氧化物对酸性品红降解效果明显优于亚甲基蓝和甲基橙,光照150 min下,降解率可达91%。  相似文献   

17.
通过共沉淀法制备了球形Li Ni_(0.5)Mn_(1.5)O_4@Li_3PO_4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能。XRD和SEM表明,Li_3PO_4包覆影响了球形Li Ni_(0.5)Mn_(1.5)O_4的晶格常数。CV和EIS表明,质量百分数5%Li_3PO_4包覆的Li Ni_(0.5)Mn_(1.5)O_4具有比纯Li Ni_(0.5)Mn_(1.5)O_4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li_3PO_4包覆的Li Ni_(0.5)Mn_(1.5)O_4具有更高的电子电导率。充放电测试表明,原位Li_3PO_4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量。质量百分数5%Li_3PO_4包覆的Li Ni_(0.5)Mn_(1.5)O_4提高的电化学性能归因于Li_3PO_4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化。  相似文献   

18.
以蔗糖为碳源,采用固相法合成了C改性的Li4Ti5O12材料.XRD衍射分析表明,C的引入没有改变Li4Ti5O12的尖品石结构,且缓解了颗粒间的团聚,并以初始蔗糖含量为10%(by mass)样品的电化学性能最佳.0.2C放电倍率下首次放电比容量达179.1mAh/g,在2C和3C倍率下首次放电比容量仍达143.8mAh/g和129.4mAh/g.循环伏安和电化学阻抗测试显示改性后的Li4Ti5O12材料电极极化程度较小,并且具有较小的电极反应阻抗.  相似文献   

19.
液相法合成锂离子电池正极材料Li_(1+x)Mn_2O_4   总被引:11,自引:0,他引:11  
采用柠檬酸络合和溶液浸渍两种方法制备Li1+xMn2 O4正极材料 ,用XRD和BET测试了材料晶体结构和比表面积 ,考察焙烧温度、Li/Mn比、起始原料对产物结构和电化学性能的影响 ,结果表明 ,焙烧温度与Li/Mn比是影响材料电化学性能的关键因素 ,确定了制备Li1+xMn2 O4材料最佳条件为 0≤x≤ 0 .0 5 ,焙烧温度 75 0°C ,所得电池材料首次充放电容量达到 1 2 0mAh/g .循环 5 0次后 ,其充放电容量为 1 1 5mAh/g .  相似文献   

20.
90年代初 ,Sony技术能源公司首先使LiCoO2 /C锂离子“摇椅”蓄电池[1]商品化 .但由于Co价格较贵 ,生产成本高以及污染环境等缺点 ,限制了Co的使用 .研究和开发用于锂离子电池作正极材料的有LiNiO2 和LiMn2 O4 .LiNiO2 的容量较高 ,毒副作用较小 ,受到人们重视 ,但是制备和纯化十分困难 .尖晶石型LiMn2 O4 [2 ,3]由于资源丰富 ,价格便宜 ,对环境污染小 ,已成为锂离子电池正极材料研究热点之一 .Li1 xMn2 O4 通常的制备方法是固相合成法 ,该法比较简单 ,但焙烧时间长、能耗高、粒度不均匀 .虽然用P…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号