首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of the upstream conditions and the degree of the wall roughness on the mean velocity profiles and some integral flow parameters in two dimensional zero-pressure-gradient boundary layer were characterized experimentally. The results were analyzed utilizing conventional and recent scaling flow parameters for 245< Re θ ≤ 11·103, where Re θ is the Reynolds number based on the free stream velocity (Ū ) and the momentum thickness (θ). Good correlation of the quantity ΔŪ + as a function of the roughness parameter k + was obtained for sand roughness of 1.7 < k + ≤ 172, revealing a universality of the roughness effect, where ΔŪ + = = (Ū Ū)/u τ and K + = ku τ /v.The mean flow structure of the outer flow was observed not to be influenced by the degree of the wall roughness, i. e., the outer flow of either the smooth or the rough surfaces scales similarly with the various scaling parameters regardless the degree of the wall roughness. However, it made flow confined to the wall region away from the classical universality, allowing similarity hypothesis not to be identical in the wall region at least for the current range of the Reynolds number.  相似文献   

2.
Large-eddy simulations were carried out to study the effects of surface roughness on a plane wall-jet using the Lagrangian dynamic eddy-viscosity subgrid-scale model, at Re = 7500 (based on the jet bulk velocity and height). Results over both smooth and rough surfaces were validated by experimental data at the same Reynolds number. As the jet is injected into the still environment, large-scale rollers are generated in the shear layer between the high-momentum fluid of the jet and the surrounding and are convected downstream with the flow. To understand the extent to which the outer-layer structures modify the flow in the inner layer and the extent to which the effect of roughness spreads away from the wall, both instantaneous and mean flow fields were investigated. The results revealed that, for the Reynolds number and roughness height considered in this study, the effect of roughness is mostly confined to the near-wall region of the wall jet. There is no structural difference between the outer layer of the wall jet over the smooth and rough surfaces. Roughness does not affect the size of the outer-layer structures or the scaling of the profiles of Reynolds stresses in the outer layer. However, in the inner layer, roughness redistributes stresses from streamwise to wall-normal and spanwise directions toward isotropy. Contours of joint probability-density function of the streamwise and wall-normal velocity fluctuations at the bottom of the logarithmic region match those of the turbulent boundary layer at the same height; while the traces of the outer-layer structure were detected at the top of the logarithmic region, indicating that they do not affect the flow very close to the wall, but still modify a major portion of the inner layer. This modification must be taken into consideration when the inner layer of a wall jet is compared with the conventional turbulent boundary layer.  相似文献   

3.
基于分形几何学,研究了表面粗糙度的分形特征.采用Weierstrass- Mandelbrot函数对多尺度自仿射的表面粗糙度进行了描述;建立了微通道内层流流动的三维模型并对表面粗糙度的影响进行了数值模拟,分析了雷诺数、相对粗糙度和分形维数对流动阻力特性的影响.研究结果表明,与常规尺度通道不同,粗糙微通道的Poiseuille数不再是常数,而是随雷诺数近似线性增加;相对粗糙度越大,流动产生的回流和分离所导致的流动压降越明显.在相同的相对粗糙度下,粗糙表面的分形维数越大,表面轮廓变化就越频繁,这也将导致流动阻 关键词: 粗糙度 层流阻力系数 微通道 分形  相似文献   

4.
A large eddy simulation (LES) was conducted of turbulent flow in a channel with a rough wall on one side and a free surface on the other by adopting an anisotropy-resolving subgrid-scale (SGS) model. A shear Reynolds number of Reτ = 395 was used based on the mean friction velocity and channel height. To investigate the grid dependency of the LES results caused by the SGS model, three grid resolutions were tested under the same definition of a roughness shape by using the immersed boundary method. The results obtained were compared with direct numerical simulation data with and without the wall roughness and those without the extra anisotropic term. The primary focus was on how the present anisotropic SGS model with coarser grid resolutions can properly provide the effects of roughness on the mean velocity and turbulent stresses, leading to a considerable reduction of the computational cost of LES.  相似文献   

5.
At Mach number 3.4, visualisation experiments of flow over backward-facing step (BFS) with or without roughness band attached on upstream wall are carried out via traditional schlieren and newly developed nano-tracer-based planar laser scattering (NPLS). The time-averaged flow characteristic of the reattachment region and the instantaneous rich structures of the redeveloping boundary layer in the steamwise-normal plane are both revealed. Additionally, top views in the different planes (y/h = 0.67, 1.00, 1.33, 1.67, 2.00) are imaged with a resolution of 0.064 mm/pixel. By contrasting the NPLS images at different times, the unsteady evolution characteristic of the coherent vortices in the redeveloping boundary layer was discussed. Static wall pressure is measured by a micro-pressure scanning system. The incipient formation positions are pointed out statistically. Without roughness, the longitudinal structures with scales of 1.0h and 1.2h form later and distribute in a longer region compared to that with roughness. Fractal analysis is applied and the averaged fractal dimensions of the overall and sectional flow structures are calculated. If roughness is adopted, the fractal dimension will be larger and the turning point in the sectional fractal dimensions is earlier. However, the dimension tends to be one coincided value in the farther downstream.  相似文献   

6.
Flow visualization was used to study the fluid-structure interaction between a circular cylinder and a shallow turbulent open channel flow. The Reynolds number ranged from Re D = 1500–4400 based on the cylinder diameter, and from Re H =7,800?27,600 based on the channel hydraulic radius. The cylinder was mounted vertically on the channel bed and the flow depth-to-cylinder-diameter ratio was varied fromd/D=7.0?11.7. Tests were carried out over smooth and rough beds, with the rough beds being either permeable or impermeable. The study showed that the horseshoe vortex forming at the cylinder-bed junction affects many of the flow structures, including the mode of vortex shedding, the shear layer dynamics, the vortex formation length, and the width of the near-wake region. The influence of the horseshoe vortex can be recognized throughout the depth of flow; however, its influence decreases with an increase in distance from the channel bed. It was also possible to discern that the bed roughness resulted in a change to the above interaction and the permeability of the bed resulted in additional changes.  相似文献   

7.
Heat transfer and pressure drop measurements were conducted to study the thermal-hydraulics in a square, round-edged channel roughened by ribs (e/Dh = 0.0638, p/e = 10) on one wall at Reynolds numbers ranging from 5.0 × 104 to 2.5 × 105. Three variously shaped ribs were investigated: Transverse ribs with square cross sections, transverse ribs, and upstream directed 60° V-shaped ribs with round-edged rib front and rear surfaces. Friction factors, Nusselt number ratios, roughness functions, and the thermal performance were presented. The highest heat transfer and best thermal performance is reached by the upstream directed V-shaped ribs.  相似文献   

8.
Three-dimensional effects in turbulent duct flows, i.e., sidewall boundary layers and secondary motions, are studied by means of direct numerical simulation (DNS). The spectral element code Nek5000 is used to compute turbulent duct flows with aspect ratios 1–7 (at Reb, c = 2800, Reτ, c ? 180) and aspect ratio 1 (at Reb, c = 5600, Reτ, c ? 330), in streamwise-periodic boxes of length 25h. The total number of grid points ranges from 28 to 145 million, and the pressure gradient is adjusted iteratively in order to keep the same bulk Reynolds number in the centreplane with changing aspect ratio. Turbulence is initiated via a trip forcing active during the initial stages of the simulation, and the statistical convergence of the data is discussed both in terms of transient approach and averaging period. Spanwise variations in wall shear, mean-flow profiles, and turbulence statistics are analysed as a function of aspect ratio, and also compared with the spanwise-periodic channel (as idealisation of an infinite aspect ratio duct). The computations show good agreement with experimental measurements carried out in parallel at the Illinois Institute of Technology (IIT) in Chicago, and highlight the relevance of sidewall boundary layers and secondary vortices in the physics of the duct flow. The rich array of secondary vortices extending throughout the upper and lower walls of the duct, and their dependence on Reynolds number and aspect ratio, had not been reported in the literature before.  相似文献   

9.
In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary.The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics.The domain height must be greater than 8h(h is the average building height)in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height.The Reynolds number effects on the dynamic characteristics and flow patterns are investigated.The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster.Roughness height increases monotonously with Reynolds number by 20%from Re*=103 to Re*=105 but displacement height is almost unchanged.Within the canopy layer of heterogeneous building clusters,flow structures vary between buildings and turbulence is more active at high Reynolds number.  相似文献   

10.
The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling–recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.  相似文献   

11.
徐敏义  杜诚  米建春 《物理学报》2011,60(3):34701-034701
本文采用热线风速仪测量了出口雷诺数为Re (≡ Ujd/ν) = 20100的圆形射流的中心线轴向速度,其中Uj为动量平均出口速度,d为喷嘴出口直径,ν为运动黏性系数.在有效去除热线测量数据中的高频噪声后,作者对射流中心线上小尺度湍流统计量的变化规律进行了系统的分析.研究发现,射流在经过一定距离的发展后,其小尺度统计量逐渐进入自相似状态,湍动能平均耗散率ε随下游距离的增加以指数形 关键词: 恒温热线 圆形湍射流 耗散率 小尺度  相似文献   

12.
Simulation of turbulent wall-bounded flows requires a high spatial resolution in the wall region, which limits the range of Reynolds numbers which can be effectively reached. In previous work, we proposed proper orthogonal decomposition (POD) based wall boundary conditions to bypass the simulation of the inner wall region. Tests were carried out for direct numerical simulation at a low Reynolds number Reτ = 180. The boundary condition is based on the POD spatial eigenfunctions which are determined a priori in the full channel. It consists of a three-component velocity field on the plane y+ = 50 which is reconstructed at each instant from a combination of selected eigenfunctions. The coefficients of the combination are estimated from the simulation in the reduced domain using the threshold-based reconstruction method described in Podvin et al. The study is now extended to large-eddy simulation at higher Reynolds numbers Reτ = 295 and Reτ = 590. Two versions of the reconstruction method are considered. In the first version, both the phases and the moduli of the coefficients are allowed to vary. In the second version, only the phases are adjusted. We find that the latter method is associated with improved statistics and is relatively robust with respect to the reconstruction threshold. However, it is sensitive to the details of the numerical simulation, unlike the former method, which is associated with less accurate statistics and is more dependent on the reconstruction threshold.  相似文献   

13.
The unsteady turbulent channel flow subject to the temporal acceleration is considered in this study. Large-eddy simulations were performed to study the response of the turbulent flow to the temporal acceleration. The simulations were started with the fully developed turbulent channel flow at an initial Reynolds number of Re0 = 3500 (based on the channel half-height and the bulk-mean velocity), and then a constant temporal acceleration was applied. During the acceleration, the Reynolds number of the channel flow increased linearly from the initial Reynolds number to the final Reynolds number of Re1 = 22,600. The effect of grid resolution, domain size, time step size on the simulation results was assessed in a preliminary study using simulations of the accelerating turbulent flow as well as simulations of the steady turbulent channel flow at various Reynolds numbers. Simulation parameters were carefully chosen from the preliminary study to ascertain the accuracy of the simulation. From the accelerating turbulent flow simulations, the delays in the response of various flow properties to the temporal acceleration were measured. The distinctive features of the delays responsible for turbulence production, energy redistribution, and radial propagation were identified. Detailed turbulence statistics including the wall shear stress response during the acceleration were examined. The results reveal the changes in the near-wall structures during the acceleration. A self-sustaining mechanism of turbulence is proposed to explain the response of the turbulent flow to the temporal acceleration. Although the overall flow characteristics are similar between the channel and pipe flows, some differences were observed between the two flows.  相似文献   

14.
We conduct a series of large eddy simulations (LES) of turbulent boundary layers over arrays of cuboidal roughness elements at arbitrary orientation angles (non-frontal orientations with the incident flow). Flow response to changing roughness orientation is systematically studied at two ground coverage densities, λp = 0.06 and 0.11. As expected, the effective roughness heights zo measured from LES are higher for λp = 0.11 than for λp = 0.06, although appreciable changes both in zo and wall shear stress (friction velocity) are observed at both ground coverage densities as the roughness orientation angle changes. This suggests the necessity of accounting for detailed rough wall topology (including more information than just λp, λf) when relating rough wall morphology to its aerodynamic properties. To this end, a recently developed analytical rough wall parameterisation is used to predict the aerodynamic properties of the simulated rough surfaces. In this rough wall model, wake interactions among roughness elements are explicitly modelled using the concept of sheltering height and exponential attenuation coefficient. As a result, the parameterisation is responsive to detailed ground roughness arrangements and flow conditions, including roughness height variations, element orientation, incident flow direction, transverse displacements, etc. Model-predicted effective roughness heights, wall stress, mean velocity at the height of the roughness, and in some cases displacement height, are compared against the LES measurements from this study as well as numerical/experiment measurements from other authors. The predictions from the model are found to agree well with the measurements both in trends and in absolute values, thus extending the applicability of the analytical rough wall model to more general surfaces than those previously tested.  相似文献   

15.
Tensorial decompositions and projections are used to study the performance of algebraic non-linear models and predict the anisotropy of the Reynolds stresses. Direct numerical simulation (DNS) data for plane channel flows at friction Reynolds number (Reτ = 180, 395, 590, 1000), and for the boundary layer using both DNS (Reτ = 359, 830, 1271) and experimental data (Reτ = 2680, 3891, 4941, 7164) are used to build and evaluate the models. These data are projected into tensorial basis formed from the symmetric part of mean velocity gradient and non-persistence-of-straining tensor. Six models are proposed and their performances are investigated. The scalar coefficients for these six different levels of approximations of the Reynolds stress tensor are derived, and made dimensionless using the classical turbulent scales, the kinetic turbulent energy (κ) and its dissipation rate (ε). The dimensionless coefficients are then coupled with classical wall functions. One model is selected by comparing the predicted Reynolds stress components with experimental and DNS data, presenting a good prediction for the shear and normal Reynolds stresses.  相似文献   

16.
Measurements of heat transfer and fluid flow of turbulent boundary-layer air flow in natural and mixed convection over an isothermal two-dimensional, vertical forward-facing step are reported. The upstream and downstream walls and the step itself were heated to a uniform and constant temperature. Air velocity and temperature distributions and their turbulent fluctuations are measured simultaneously using a two-component laser-Doppler velocimeter (LDV) and a cold wire anemometer, respectively. The present study treats buoyancy-dominated mixed convection over a vertical forward-facing step and examines the effect of a small free stream velocity on turbulent natural convection. The experiment was carried out for a step height of 22 mm, for a range of free stream air velocities 0 m/s ? u ? 0.55 m/s (corresponding to a range of Reynolds numbers of 0 ? Re\abinf{s} ? 712), and a temperature difference, ΔT, of 30°C between the heated walls and the free stream air (corresponding to a local Grashof number Grxi = 6.45 × 1010). It was found that the reattachment length increases while the heat transfer rate from the downstream heated wall decreases as the small free stream velocity increases.  相似文献   

17.
The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor’s microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.  相似文献   

18.
采用大涡模拟和浸没边界法相结合对不同高度和不同间距横向粗糙元壁面槽道湍流进行了模拟,得到了光滑壁面和粗糙壁面湍流的流向平均速度分布,雷诺剪切应力,脉动速度均方根和近壁区拟序结构。结果发现横向粗糙元降低了流向平均速度,增大了流动阻力,粗糙壁面湍流的雷诺剪切应力大于光滑壁面。粗糙元降低了流向脉动速度,增强了展向和法向脉动速度。粗糙元高度越高,对湍流流动影响越大,而粗糙元间距对湍流统计特性的影响不大。粗糙壁面仍然存在着和光滑壁面类似的条带结构。  相似文献   

19.
A high-resolution particle image velocimetry was used to characterize a low Reynolds number turbulent flow in a channel. Experiments were conducted over a sand grain-coated surface of large relative roughness, and the results were compared with measurements over a smooth surface. The roughness perturbation significantly modified the outer layer. Even though the streamwise Reynolds stress shows less sensitivity in the outer layer to the boundary condition, significant enhancements were observed in the wall-normal Reynolds stress and the Reynolds shear stress. These modifications were considered as footprints of the larger-scale eddies transporting intense wall-normal motions away from the rough wall. A quadrant decomposition shows that strong and more frequent ejections are responsible for the larger values of the mean Reynolds shear stress over the rough wall. The results also indicate that spanwise vortex cores with mean vorticity of the same sign as the mean shear are the dominant smaller-scale vortical structures over the smooth and rough walls. A linear stochastic estimation-based analysis shows that the average larger-scale structure associated with these vortices is a shear layer that strongly connects the outer layer flow to the near-wall flow. A proper orthogonal decomposition of the flow suggests that the large-scale eddy is more energetic for the rough wall, and contributes more significantly to the resolved turbulent kinetic energy and the Reynolds shear stress than the smooth wall.  相似文献   

20.
Flow past a square prism with cut-corners at the front-edge is numerically and experimentally visualized to investigate a mechanism of drag reduction. An adaptive numerical scheme based on the vortex method is implemented for two values of the Reynolds number between 200 and 1,250, and the results are compared with experiments. Experimental visualization techniques include the hydrogen-bubble technique atRe=4,000 and the oil-flow technique atRe=10,000 for a global wake formation, and the aluminum-flake technique for transient flow at the early stage of motion atRe=1,250. A similar reattachment flow pattern is shown in a wide range of the Reynolds number between 200 and 10,000, which implies a possibility of the drag reduction in the Reynolds number being approximately lower than 8,000 unlike the previous findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号