首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
固态金属锂电池因其优异的安全性和高的理论能量密度被认为是最具前景的下一代储能电池体系之一。随着以硫化物为代表的高离子导率电解质被逐渐开发,金属锂与固态电解质界面成为限制固态电池应用的主要瓶颈。金属锂/电解质的固固界面存在着界面接触差、界面电荷传输阻力高等问题。本文以固态金属锂软包电池为研究对象,通过由1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚、乙二醇二甲醚与双三氟磺酰亚胺锂组成的局部高盐液态电解液(HFE-DME LiTFSI)对金属锂/固态电解质界面进行润湿,增加金属锂与固态电解质之间的离子接触,降低离子传输阻力,从而提高锂离子在界面的传输能力。在30 mm×30 mm Li|Li4Ti5O12(LTO)固态软包电池中,通过3.0μL·cm?2 HFE-DME LiTFSI局部高盐液态电解液润湿金属锂与固态电解质界面,软包电池的界面电阻从4366Ω·cm?2降低到了64Ω·cm?2。在0.1C与0.5C倍率下,LTO的放电比容量分别达到107与96 mAh·g?1。同时,Li-S固态软包电池在0.01C及0.02C下,比容量也达到了1100与932 mAh·g?1。  相似文献   

2.
探讨一种新型磺酰亚胺锂盐(三氟甲基磺酰)(全氟丁基磺酰)亚胺锂{Li[(CF_3SO_2)(n-C_4F_9SO_2)N],LiTNFSI}的碳酸丙烯酯(PC)电解液的电导率、耐氧化性及基于该电解液的LiNi_(0.5)Mn_(1.5)O_4|Li电池循环性能和自放电行为.结果表明,1.0 mol/L LiTNFSI-PC电解液的室温电导率适中,氧化电位较高,并且基于该电解液的LiNi_(0.5)Mn_(1.5)O_4|Li电池表现出优异的循环性能,综合性能明显优于1.0 mol/L LiPF_6-PC电解液体系.这主要得益于1.0 mol/L LiTNFSI PC电解液与LiNi_(0.5)Mn_(1.5)O_4良好的界面匹配性.  相似文献   

3.
二次锂电池用离子液体电解质研究   总被引:6,自引:2,他引:4  
许金强  杨军  努丽燕娜  张万斌 《化学学报》2005,63(18):1733-1738
合成了哌啶类离子液体N-甲基-N-丙(丁)基哌啶三氟甲基磺酰亚胺[PP13(4)-TFSI], 并与现在常用的两种离子液体1-丁基-3-甲基-咪唑六氟磷酸(BMIPF6)及1-丁基-3-甲基-咪唑四氟硼酸(BMIBF4)进行了各种电化学性能的对比. PP13(4)-TFSI的电化学稳定窗口可以达到5.8 V, 明显大于BMIBF4 (4.7 V) 以及BMIPF6 (4.6 V). 而且PP13(4)-TFSI负极极限电位(-0.3 V vs. Li/Li)明显低于BMIPF6 (0.5 V) 和BMIBF4 (0.7 V), 有望被使用在以锂金属作为负极的二次锂电池中. 以LiTFSI /PP14-TFSI为电解质溶液测试了Li/LiCoO2纽扣电池的电化学性能, 在0.05 mA•cm-2的恒定电流充放电条件下, 电池的比容量可以达到150 mAh•g-1, 初始循环以后库仑效率接近100%. 交流阻抗测试表明, 电池的阻抗特性稳定, 不存在明显的界面钝化现象.  相似文献   

4.
将聚乙二醇单甲醚(MPEG)接枝在聚(异丁烯-alt-马来酸酐)(PIAMA)上合成梳状锂单离子导体PIAMA-g-MPEG, 并与双(三氟甲基磺酰)亚胺锂(LiTFSI)复合制成双锂盐梳状聚合物电解质薄膜. 用核磁共振波谱 (1H NMR)、 热重分析(TG)、 扫描电子显微镜(SEM)、 电化学阻抗(EIS)和电池充放电测试等方法对聚合物基体和电解质的物化性质和电化学性能进行了研究.结果表明, 设计的双锂盐梳状聚合物电解质能够有效解离并传输锂离子, 70 ℃下离子迁移数(tLi+)为0.32, 离子电导率(σ)为1.5×10-4 S/cm, 电化学稳定窗口为0~4.9 V (vs. Li/Li+). 组装Li|PIAMA-g-MPEG|Li电池并进行70 ℃恒电流充放电电压极化测试, 结果表明, 电解质与金属锂负极兼容性较好, 能够有效抑制锂枝晶的生长.组装LiFePO4|PIAMA-g-MPEG|Li电池进行70 ℃长循环及倍率性能测试, 电解质表现出了优异的高温性能.  相似文献   

5.
固态锂电池(SSLBs)因其高能量密度和出色的安全性而备受关注。然而,电极和电解质之间的较大的界面阻抗是阻碍SSLBs发展的关键问题之一。在这项工作中,我们通过同时静电纺丝和静电喷雾的方法制备了一体化的聚丙烯腈(PAN)电解质和LiFePO_4正极膜(PAN-LFP)。通过这种方法制备的PAN-LFP膜具有很好的柔性,并且正极和电解质之间是紧密接触的。把此一体化的PAN-LFP膜与锂金属负极组装成的固态Li|PAN-LFP电池,具有很小的极化和优异的界面稳定性。在0.1C的电流下固态Li|PAN-LFP电池能够放出160.8mAh·g~(-1)的比容量,并且在0.2C的电流下循环500次后仍保持81%的初始容量。此外,所得的固态Li|PAN-LFP电池即使在破坏性实验中也能够正常工作(例如弯曲、剪切),显示出优异的安全性能。  相似文献   

6.
将聚氧化乙烯(PEO)和二(三氟甲基磺酰)亚胺锂(LiTFSI)混合(固定EO/Li摩尔比为13)后, 采用溶液浇注法制备了一系列不同Li1.5Al0.5Ge1.5(PO4)3(LAGP)与PEO质量比的LAGP-PEO(LiTFSI)固体复合电解质体系. 结合电化学阻抗法、 表面形貌表征以及与惰性陶瓷填料(SiO2, Al2O3) 性能的对比分析, 探讨了LAGP在固体复合电解质中的作用机理以及锂离子的导电行为. 结果表明, 在以LAGP为主相的固体复合电解质中, PEO主要处于无定形态, 整个体系主要为PEO与LiTFSI的络合相、 LAGP与PEO(LiTFSI)相互作用形成的过渡相和LAGP晶相. 其中LAGP作为主要的导电基体不仅起到降低PEO结晶度、 改善两相导电界面的作用; 同时自身也可以作为离子传输的通道, 降低锂离子迁移的活化能, 从而使离子电导率得到提高. 当LAGP与PEO的质量比为6:4时, 固体复合电解质的成膜性能最好, 离子电导率最高, 在30 ℃时为2.57×10-5 S/cm, 接近LAGP的水平, 电化学稳定窗口超过5 V.  相似文献   

7.
近年来,交流阻抗方法已成功地应用于固体电极-电解质界面电化学性能的研究.特别是最近几年,聚氧化乙烯-锂盐复合物(PEO-LiX)系列高分子电解质材料研究的深入,研制以高分子电解质为隔膜的全固态锂电池的设想已成可能.前人用交流阻抗方法对Li/PEO-LiX和钒氧阴极/PEO-LiX界面行为研究已作了大量工作,并获得相关锂电池电极界面电化学性能的理论数据.本文用化学氧化法合成聚苯胺(PAn)阴极材料和本室改进的PEO-LiClO_4复合物作室温固体电解质,研究PAn/PEO-LiClO_4电极界面的电化学性能,获得一些新的结果。  相似文献   

8.
Li+在p H 10.5 B-R缓冲溶液中能抑制钙指示剂和H2O2形成络合物,1.0×10-4mol/L钙指示剂和1.2%的H2O2在0.16 mol/L的B-R缓冲溶液中,于起始电位-0.0 V(vs.SCE),峰电位(Ep)-0.628V(vs.SCE)处产生一灵敏的极谱还原波,Li+能与H2O2和钙指示剂结合使络合物的峰电流下降,该波的二阶导数峰电流(Ip")与Li+质量浓度在0.8~800μg/m L范围内呈良好的线性关系,检出限为0.3146μg/m L。回收率为94.4%~102.9%。方法已用于碳酸锂片中Li+的测定,并讨论了其机理。电极反应物是钙指示剂和H2O2的络合物。  相似文献   

9.
《电化学》2017,(4)
锂离子电池的广泛应用对储能器件的能量密度、安全性和充放电速度提出了新的要求.全固态锂电池与传统锂离子电池相比具有更少的副反应和更高的安全性,已成为下一代储能器件的首选.构建匹配的电极/电解质界面是在全固态锂电池中获得优异综合性能的关键.本文采用第一性原理计算研究了固态电池中电解质表面及正极/电解质界面的局域结构和锂离子输运性质.选取β-Li_3PS_4(010)/LiCoO_2(104)和Li_4GeS_4(010)/LiCoO_2(104)体系计算了界面处的成键情况及锂离子的迁移势垒.部分脱锂态的正极/电解质界面上由于Co-S成键的加强削弱了P/Ge-S键的强度,降低了对Li+的束缚,从而导致了更低的锂离子迁移势垒.理解界面局域结构及其对Li+输运性质的影响将有助于人们在固态电池中构建性能优异的电极/电解质界面.  相似文献   

10.
制备了一种核壳带状C/VN复合材料,通过SEM和TEM研究了复合材料的形貌结构。以ZIF-8/V2O5·nH2O、C/V2O5和C/VN三种材料作为含硫正极,锂片为负极,1.0 M LiTFSI,2%LiNO3/DME∶DOL(体积比1∶1)为电解液,组装锂硫电池进行电化学测试。结果表明:C/VN能够显著提高正极材料的电化学性能,促进充放电过程中的电子转移;S@C/VN在0.5 C的电流密度下初始比容量为900.4 mAh/g,经过500圈后,仍能提供413.9 mAh/g的比容量,展现了S@C/VN优异的循环性能。  相似文献   

11.
通过N-丁基-N-甲基哌啶双(氟磺酰)亚胺盐离子液体和双(氟磺酰)亚胺锂盐修饰了Li|Li10GeP2S12界面,并研究了界面的改性效果.研究结果表明,在界面处原位生成一层致密的固体电解质界面膜(SEI),具有一定流变性的离子液体可渗透到Li10GeP2S12晶粒内部;在0.1 mA/cm2的电流密度下,界面改性后的Li|Li10GeP2S12|Li对称电池可稳定循环1500 h以上,极化电压仅为30 mV.在2.5~3.6 V电压范围内,Li|Li10GeP2S12|LiFePO4电池在0.2C倍率下充放电循环的首次放电比容量为148.1 mA·h/g,库仑效率为95.8%,经过30次循环后容量保持率为90.1%.  相似文献   

12.
采用聚碳酸亚丙酯(PPC)、偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))、双三氟甲烷磺酰亚胺锂(LiTFSI)、磷酸钛铝锂(Li_(1.4)Al_(0.4)Ti_(1.6)(PO_4)_3)和锂离子电池三元电解液(1 mol·L~(-1)LiPF_6的碳酸乙烯酯(EC)-碳酸二甲酯(DMC)-碳酸甲乙酯(EMC)溶液,V_(EC)∶V_(DMC)∶V_(EMC)=1∶1∶1)制得准固态复合电解质,其中液态电解质含量为9%(w/w)。准固态复合电解质膜在25℃下电导率达1.3×10~(-4) S·cm~(-1)。与LiFePO_4组装成准固态锂电池,0.5C倍率下首次放电比容量达128.4 mAh·g~(-1),充放电50次后容量保持率为80%。与纯聚合物准固态电解质相比,添加Li_(1.4)Al_(0.4)Ti_(1.6)(PO_4)_3可显著降低界面电阻。  相似文献   

13.
车海英  杨军  吴凯  王久林  努丽燕娜 《化学学报》2011,69(11):1287-1292
系统研究了电解质锂盐对磷酸铁锂电极高温性能的影响, 并探讨了相关的作用机理. 差示扫描量热仪测试显示, 与LiPF6相比, 二(三氟甲基磺酰)亚胺锂(LiTFSI)和LiBF4具有对水份稳定且热稳定性好的优点, 更适合高温条件下使用. 应用等离子体发射光谱考察LiFePO4在55 ℃和不同电解液体系中铁离子溶出程度, 结果表明, 在LiTFSI和无氟锂盐电解液中LiFePO4的铁很少溶出, 而在LiPF6电解液中却溶出严重, 且FePO4的铁溶出量高于LiFePO4. 循环伏安和光学显微镜测试结果显示少量LiBF4的加入能有效抑制LiTFSI对集流体铝箔的腐蚀. 以LiTFSI和LiBF4作为混合锂盐配成的电解液能显著改善LiFePO4/Li电池的高温电化学性能, 在55 ℃和1 C倍率下循环40次后放电比容量达147.7 mAh/g.  相似文献   

14.
蔡燕  李在均  张海朗  范旭  张锁江 《化学学报》2010,68(10):1017-1022
合成了五种新的1-烷基-2,3-二甲基咪唑二(三氟甲基磺酰)亚胺离子液体(alkyl-DMimTFSI).以离子液体作为Li/LiFeO4电池电解液,分别考察不同烷基(正丁基、正戊基、正辛基、异辛基和正癸基)对电解液理化性质、界面性质和电池行为的影响.结果表明离子液体的电化学窗口都可以达到5.6V(-0.4~5.2Vvs.Li+/Li),显示它们具有较好的电化学稳定性.加入碳酸亚乙烯酯作为添加剂后,离子液体电解液在Li负极形成稳定的固体电解质相界面膜(SEI),从而提高了Li负极的稳定性,保护了Li片不受腐蚀.电化学阻抗和循环伏安分析进一步揭示LiFeO4正极与离子液体电解液也有良好的兼容性.此外,研究还表明离子液体中烷基种类严重影响它们的电池行为.采用butyl-DMimTFSI和amyl-DMimTFSI电解液体系的电池充放电容量和可逆性明显优于另外三种离子液体,它们的首次放电容量分别达到145和152.6mAh/g,并表现出良好的充放电循环性能.因粘度最大,采用isooctyl-DMimTFSI电解液的电池首次放电容量仅为8.3mAh/g,但添加碳酸丙烯酯(质量比1∶1)稀释后首次放电容量上升至132.4mAh/g.  相似文献   

15.
本文研制了以N263-MoO_4~(-2)缔合物为活性材料制成的十二烷基硫酸根PVC型膜电极。电极具有较好的选择性与灵敏度。检出限为3×10~(-7)mol/L,线性范围为2×10~(-3)—5×10~(-7)mol/L,其斜率为59±0.5mV(25℃),与理论值吻合。电池的组成如下: Ag/AgCl|0.1mol╱L NaCl|PVC敏感膜|试液‖SCE 本电极很成功地应用于测定牙膏及头发乳中的十二烷基硫酸根离子的含量。与其他方法对比,结果吻合。本电极取材容易,制作、处理及组装简单,便于在实际中应用。  相似文献   

16.
在含有 3.6×10-3mol/L 的 VOSO4、6.0×10-5mol/L 的 3,4-二羟基苯甲酸(DHBA)、 0.1mol/L 的甲酸盐缓冲溶液(pH3.3)体系中,Sn(Ⅳ)-DHBA 络合物产生一灵敏的吸附平行催化波,峰电位在 -0.52 V(vs.SCE).二次导数波高与锡浓度在 3.4×10-10~5.1×10-7mol/L 范围内呈良好线性关系.检出限达浓度 2×10-10mol/L .研究了催化波的性质和电极反应机理.方法已应用于罐头食品中微量锡的测定.  相似文献   

17.
锌(Ⅱ)-茜素紫络合物的极谱行为及应用   总被引:2,自引:0,他引:2  
用线性扫描示波极谱法研究了锌 ( ) -茜素紫络合物的伏安行为 ,发现在含有 0 .1 mol/L KCl,p H=9.96的 Britton- Robinson缓冲溶液中锌 ( ) -茜素紫络合物产生一灵敏的极谱吸附波 ,其峰电位为 - 1 .2 7V( vs.SCE) ,峰电流与锌 ( )的浓度在 8× 1 0 - 8~ 2× 1 0 - 6 mol/L的范围内呈线性关系 ,检出限为 5× 1 0 - 8mol/L。研究了电极反应机理 ,并用建立的方法成功地测定了发样中的锌  相似文献   

18.
裴亮  王理明  郭维  赵楠 《化学学报》2011,69(13):1553-1558
研究了以聚偏氟乙烯膜为支撑体, 二-(2-乙基己基)磷酸(D2EHPA)为流动载体, 煤油和D2EHPA的混合溶液作为膜溶液, 膜溶液和解析剂HCl溶液组成更新相的更新型支撑液膜(RSLM)中Gd(III)的分离行为|考察了料液pH、更新相HCl浓度、膜溶液与HCl溶液体积比、不同载体浓度对Gd(III)分离的影响, 得出了Gd(III)最优分离条件为: 更新相HCl溶液浓度4.00 mol/L, 膜溶液与HCl溶液体积比4∶3, 载体浓度控制在0.160 mol/L, 料液相中pH为4.80. 在最优分离条件下, 当Gd(III)的初始浓度为1.00×10-4 mol/L时, 35 min Gd(III)分离率达到95.7%. 最后根据传质定律和界面化学理论提出了Gd(III)在RSLM中的传质动力学方程.  相似文献   

19.
铅-茜素紫-邻菲罗啉体系的极谱行为及其应用   总被引:4,自引:0,他引:4  
用线性扫描示波极谱法研究了 Pb( ) -茜素紫 -邻菲罗啉体系的伏安行为 ,发现在含有 0 .1 mol/L KCl,p H 4.70的 HAc- Na Ac缓冲溶液中 Pb( ) -茜素紫 -邻菲罗啉体系产生一灵敏的极谱吸附波 ,其峰电位为 - 0 .56V( vs.SCE) ,峰电流与铅 ( )的浓度在 8× 1 0 - 8~ 2× 1 0 - 6 mol/L范围内呈线性关系 ,检出限为 5× 1 0 - 8mol/L;研究了电极反应机理 ,并用建立的方法测定了皮蛋中的铅含量。  相似文献   

20.
本研究利用滴涂法和电沉积法构建了氧化石墨烯/金纳米粒子复合膜修饰电极(GCE/GO/AuNPs),基于目标DNA和探针结合前后探针在电极表面构型的变化导致电化学信号变化,实现对大肠杆菌(E.coli)DNA和沙门氏菌(Sal)DNA的智能识别。以目标物为输入信号,分别以Σ|ΔI|和|ΔIMB/ΔIFc|为输出,构建了"AND"型和"XOR"型DNA分子逻辑门,提出了一种新型的可用于逻辑运算的半加器模型。采用方波伏安法(SWV)检测两种标记探针电流变化值Σ|ΔI|,其与E.coli DNA和Sal DNA浓度的对数值在1.0×10~(-13)~1.0×10~(-8) mol·L~(-1)范围内呈现良好的线性关系,检出限(S/N=3)分别为3.2×10~(-14) mol·L~(-1)和1.7×10~(-14) mol·L~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号