共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on planar high-speed Rayleigh scattering measurements of the mixture fraction Z of propane discharging from a turbulent round jet into co-flowing carbon dioxide at nozzle-based Reynolds numbers Re 0 = 3000–8600, we use scalar gradient trajectories to investigate the local structure of the turbulent scalar field with a focus on the scalar turbulent/non-turbulent interface. The latter is located between the fully turbulent part of the jet and the outer flow. Using scalar gradient trajectories, we partition the turbulent scalar field into these three regions according to an approach developed by Mellado et al. (J.P. Mellado, L. Wang, and N. Peters, Gradient trajectory analysis of a scalar field with external intermittency, J. Fluid Mech. 626 (2009), pp. 333–365.). Based on these different regions, we investigate in a next step zonal statistics of the scalar probability density function (pdf) P(Z) as well as the scalar difference along the trajectory ΔZ and its mean scalar value Zm , where the latter two quantities are used to parameterize the scalar profile along gradient trajectories. We show that the scalar pdf P(Z) can be reconstructed from zonal gradient trajectory statistics of the joint pdf P(Zm , ΔZ). Furthermore, on the one hand we relate our results for the scalar turbulent/non-turbulent interface to the findings made in other experimental and numerical studies of the turbulent/non-turbulent interface, and on the other hand discuss them in the context of the flamelet approach and the modelling of pdfs in turbulent non-premixed combustion. Finally, we compare the zonal statistics for P(Z) with the composite model of Effelsberg and Peters (E. Effelsberg and N. Peters, A composite model for the conserved scalar pdf, Combust. Flame 50 (1983), pp. 351–360) and observe a very good qualitative and quantitative agreement. 相似文献
2.
Direct numerical simulation (DNS) of passive (non-buoyant) and active (buoyant) scalar homogeneous turbulence is carried out using a standard pseudo-spectral numerical method. The flow settings simulated include stationary forced and decaying passive-scalar turbulence, as well as decaying anisotropic active-scalar turbulence. The Schmidt number is unity in all cases. The results are compared with, and are found to be in very good agreement with, previous similar DNS studies. The well-validated DNS data are divided into 19 sets, and are employed to study different large eddy simulation (LES) subgrid-scale (SGS) models for the SGS scalar flux. The models examined include three eddy-viscosity-type models (Smagorinsky, Vreman and Sigma with a constant SGS Schmidt number), a Dynamic Structure model and two versions of the Gradient (Gradient and Modulated Gradient) model. The models are investigated with respect to their ability to predict the orientation, and the magnitude, of the SGS scalar flux. Eddy-viscosity models are found to predict the magnitude of the SGS scalar flux accurately, but are poor at predicting the orientation of the SGS scalar flux. The Dynamic Structure and Gradient models are better than eddy-viscosity models at predicting both the magnitude and direction. However, neither of them can be realised in an actual LES, without carrying additional transport equations. Based on these observations, four new models are proposed – combining directions from Dynamic Structure and Gradient models, and magnitudes from Smagorinsky and Vreman eddy-viscosity models. These models are expected to be better than eddy-viscosity and Modulated Gradient models, and this is confirmed by preliminary a posteriori tests. 相似文献
3.
The advection of a passive scalar through an initial flat interface separating two different isotropic decaying turbulent fields is investigated in two and three dimensions. Simulations have been performed for a range of Taylor’s microscale Reynolds numbers from 45 to 250 and for a Schmidt number equal to 1. Different to the case where the transport involves the momentum and kinetic energy only and one intermittency layer is formed in the low-turbulent energy side of the system, in the passive scalar concentration field two intermittent layers are observed to develop at the sides of the interface. The layers move normally to the interface in opposite directions. The dimensionality produces different time scaling of the passive scalar diffusion, which is much faster in the two-dimensional case. In two dimensions, the propagation of the intermittent layers exhibits a significant asymmetry with respect to the initial position of the interface and is deeper for the layer which moves towards the high kinetic energy side of the system. In three dimensions, the two intermittent layers propagate nearly symmetrically with respect the centre of the mixing region. During the temporal decay, inside the mixing, which is both inhomogeneous and anisotropic but devoid of a mean velocity shear, the passive scalar spectra are computed. In three dimensions, the exponent in the scaling range gets in time a value close to that of the kinetic energy spectrum of isotropic turbulence (?5/3). In two dimensions, instead the exponent settles down to a value that is about one-half of the corresponding isotropic case. By means of an analysis based on simple wavy perturbations of the interface we show that the formation of the double layer of intermittency is a dynamic general feature not specific to the turbulent transport. These results of our numerical study are discussed in the context of experimental results and numerical simulations. 相似文献
4.
The thin interface separating the inner turbulent region from the outer irrotational fluid is analysed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. The conditional statistics for velocity are in remarkable agreement with the results for other free shear flows available in the literature, such as turbulent jets and wakes. In addition, an analysis of the passive scalar field in the vicinity of the interface is presented. It is shown that the scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number (Sc). In the present study, such a strong jump is observed for a scalar with Sc ≈ 1. Conditional statistics of kinetic energy and scalar dissipation are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterised by a strong peak very close to the interface. Finally, it is shown that the geometric features of the interfaces correlate with relatively large scale structures as visualised by low-pressure isosurfaces. 相似文献
5.
圆柱尾流温度标量场的小波分析$lt;font color="#ff0000"$gt;$lt;font color="#ff0000"$gt;(已撤稿)$lt;/font$gt;$lt;/font$gt; 下载免费PDF全文
通过使用一排16根冷线探头排在多个空间点同时测量微加热圆柱的尾流温度场, 用小波分析技术对瞬时温度场的时间序列信号进行多尺度分析, 目的是研究不同尺度脉动温度对总体温度场的贡献.直径为d = 12.7 mm 的圆柱产生了被测的尾流, 对应的雷诺数为5500, 测量区域位于下游距离为2d 和 20d 之间. 基于小波多尺度分辨技术, 尾流温度场被分解为不同温度脉动特征尺度的小波分量. 通过分析这些小波分量的瞬时温度等值线图, 能够直接观测到不同特征尺度的涡结构运动特征和湍流间歇过程. 特别地, 我们在近场区从原始信号分解获得的高频区域中发现了K-H涡的存在. 不同尺度的温度方差沿流向的变化表明, 在下游距离为x=3d和 20d之间, 中等尺度的结构比大尺度和小尺度结构对总的温度均方根的贡献更大. 不同尺度的自相关函数表明, 大尺度和中等尺度的结构显示出较大的相关性, 而高频的小波分量则更快地失去了原有的拟序性.
关键词:
湍流尾流
被动标量
小波分析 相似文献
6.
Large eddy simulations of a circular orifice jet with and without a cross-sectional exit plate 下载免费PDF全文
The effect of a cross-sectional exit plane on the downstream mixing characteristics of a circular turbulent jet is in- vestigated using large eddy simulation (LES). The turbulent jet is issued from an orifice-type nozzle at an exit Reynolds number of 5 ×104. Both instantaneous and statistical velocity fields of the jet are provided. Results show that the rates of the mean velocity decay and jet spread are both higher in the case with the exit plate than without it. The existence of the plate is found to increase the downstream entrainment rate by about 10% on average over the axial range of 8-30de (exit diameter). Also, the presence of the plate enables the formation of vortex rings to occur further downstream by 0.5-1 .Ode. A physical insight into the near-field jet is provided to explain the importance of the boundary conditions in the evolution of a turbulent jet. In addition, a method of using the decay of the centreline velocity and the half-width of the jet to calculate the entrainment rate is proposed. 相似文献
7.
Amani Amamou Sabra Habli Philippe Bournot Georges Le Palec 《Journal of Turbulence》2016,17(2):237-251
This paper proposes a computational study for the analysis of the velocity and the scalar concentration field of a round turbulent jet flowing into a uniform stream in opposite direction. The investigation is carried out for a range of low jet-to-counterflow velocity ratios; R = 1.3, 1.6, 2.2, 3.1 and 3.4. The Reynolds stress model is applied in numerical simulation to compare obtained results with experimental data from the literature. It is found that predicted results are in good agreement with the experimental data and that the jet fluid decays faster in the presence of a counterflow. The linearity between the penetration distance and the velocity ratio is verified and the axial fluctuating velocities along jet centreline appear to have two distinct peaks, except for the stronger counterflow. The enhanced mixing efficiency of the counterflowing jet is verified through the radial distribution of velocity and scalar concentration at different streamwise stations. 相似文献
8.
GUAN Hui & WU ChuiJie School of Mechanical Power Engineering East China University of Science Technology Shanghai China Research Center for Fluid Dynamics PLA University of Science Technology Nanjing China 《中国科学G辑(英文版)》2007,50(1):118-132
Using the method of large-eddy simulation, the 3-dimensional turbulent jets in crossflow with stream-wise and transverse arrangements of nozzle are simulated, emphasizing on the dynamical process of generation and evolution of vortex structures in these flows. The results show that the basic vortex structures in literatures, such as the counter-rotating vortex pair, leading-edge vortices, lee-side vortices, hanging vortices, kidney vortices and anti-kidney vortices, are not independent physical substances, but local structures of the basic vortex structure of turbulent jets in crossflow-the 3-D stretching vortex rings originating from the orifice of the nozzle, which is discovered in this study. Therefore, the most important large-scale structures of turbulent jets in crossflow are unified to the 3-D vortex rings which stretch and twist in stream-wise and swing in transverse directions. We also found that the shedding frequencies of vortex rings are much lower than the one corresponding to the appearance of leading-edge and lee-side vortices in the turbulent jets. 相似文献
9.
LI Xinliang FU Dexun & MA Yanwen State Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China Correspondence should be addressed to Li Xinliang 《中国科学G辑(英文版)》2004,47(1):52-63
1IntroductionDirectnumericalsimulation(DNS)becomesanimportanttoolinrecentresearchofturbulence[1].DNSofcompressibleturbulenceismoredifficultthanthatoftheincompressibleturbulence.WhentheturbulentMachnumberisgreaterthan0.3theshockletsmayappearinthecompressibleturbulentflowfields.Thereasonandmechanismofshockletsexistencearenotclearyet.TheturbulentMachnumberinDNScannotbeveryhighwiththepresentexistingnumericalmethodsandcomputerresource.Fortheproblemofcompressibleisotropicturbulencewiththeinitia… 相似文献
10.
理论分析了射流抛光的紊动冲击射流特点,构建了射流抛光的垂直冲击射流模型和斜冲击射流模型。根据射流抛光冲击射流的特点,比较各种流体模型后,采用RNG k-e 模型应用于射流抛光模型的计算。利用计算流体力学理论的二阶迎风格式对抛光模型方程离散,用SIMPLEC数值计算方法对射流抛光过程的紊动冲击射流和离散相磨粒分布进行数值模拟,得到了射流抛光过程的连续流场和离散相磨粒与水溶液的耦合流场,同时计算出了抛光液射流在工件壁面上的压力、速度、紊动强度、剪切力分布和磨粒体积质量分布,分析了垂直射流抛光模型和斜冲击射流抛光模型紊流流场的特点。 相似文献
11.
12.
13.
Andrei N. Lipatnikov Shinnosuke Nishiki Tatsuya Hasegawa 《Combustion Theory and Modelling》2019,23(2):245-260
Linear relations between (i) filtered reaction rate and filtered flame surface density (FSD) and (ii) filtered reaction rate and filtered scalar dissipation rate (SDR), which are widely used in Large Eddy Simulation (LES) research into premixed turbulent combustion, are examined by processing DNS data obtained from a statistically 1D planar flame under weakly turbulent conditions that are most favourable for the two approaches (flamelet combustion regime, single-step chemistry, equidiffusive mixture, adiabatic burner, and low Mach number). The analysis well supports the former approach provided that the filtered reaction rate is combined with filtered molecular transport term. In such a case, both the RANS and LES FSD approaches are based on local relations valid within weakly perturbed flamelets. Accordingly, simply recasting RANS expressions to a filtered form works well. On the contrary, while the FSD and SDR approaches appear to be basically similar at first glance, the analysis does not support the latter one, but shows that a ratio of the filtered reaction rate to the filtered SDR is strongly scattered within the studied flame brush, with its conditionally mean value varying significantly with Favre-filtered combustion progress variable. As argued in the paper, these limitations of the LES SDR approach stem from the fact that it is based on a relation valid after integration over weakly perturbed flamelets, but this relation does not hold locally within such flamelets. Consequently, when a sufficiently small filter is applied to instantaneous fields, the filter may contain only a part of the local flamelet, whereas the linear relation holds solely for the entire flamelet and may not hold within the filtered flamelet volume. Thus, the present study implies that straightforwardly recasting well-established RANS equations to a filtered form is a flawed approach if the equations are based on integral features of local burning. 相似文献
14.
理论分析了射流抛光的紊动冲击射流特点,构建了射流抛光的垂直冲击射流模型和斜冲击射流模型。根据射流抛光冲击射流的特点,比较各种流体模型后,采用RNG k-e 模型应用于射流抛光模型的计算。利用计算流体力学理论的二阶迎风格式对抛光模型方程离散,用SIMPLEC数值计算方法对射流抛光过程的紊动冲击射流和离散相磨粒分布进行数值模拟,得到了射流抛光过程的连续流场和离散相磨粒与水溶液的耦合流场,同时计算出了抛光液射流在工件壁面上的压力、速度、紊动强度、剪切力分布和磨粒体积质量分布,分析了垂直射流抛光模型和斜冲击射流抛光模型紊流流场的特点。 相似文献
15.
16.
Konstantin A. Kemenov Haifeng Wang Stephen B. Pope 《Combustion Theory and Modelling》2013,17(4):611-638
A posteriori analysis of the statistics of two large-eddy simulation (LES) solutions describing a piloted methane–air (Sandia D) flame is performed on a series of grids with progressively increased resolution reaching about 10.5 million cells. Chemical compositions, density and temperature fields are modelled with a steady flamelet approach and parametrised by the mixture fraction. The difference between the LES solutions arises from a different numerical treatment of the subgrid scale (SGS) mixture fraction variance – an important quantity of interest in non-premixed combustion modelling. In the first case (model I), the variance transport equation is solved directly, while in the second (model II), an equation for the square of the mixture fraction is solved, and the variance is computed from its definition. The comparison of the LES solutions is based on the convergence properties of their statistics with respect to the turbulence resolution length scale. The dependence of the LES statistics is analysed for velocity and the mixture fraction fields, and tested for convergence. For the most part, the statistics converge for the finest grids, but the variance of the mixture fraction shows some residual grid dependence in the high-gradient regions of the jet near field. The SGS variance given by model I exhibits realisability everywhere, whereas in regions of the flame model II is non-realisable, predicting negative variances. Furthermore, the LES statistics of model I exhibit superior convergence behaviour. 相似文献
17.
Temistocle Grenga Jonathan F. MacArt Michael E. Mueller 《Combustion Theory and Modelling》2018,22(4):795-811
Dynamic Mode Decomposition (DMD) is a technique that enables investigation of unsteady and dynamic phenomena by decomposing data into coherent modes with corresponding growth rates and oscillatory frequencies. Because the method identifies structures unbiased by energy, it is particularly well suited to exploring dynamic processes having phenomena that span disparate temporal and spatial scales. In turbulent combustion, DMD has been previously applied to the analysis of narrowband phenomena such as combustion instabilities utilising both experimental and computational data. In this work, DMD is used as a tool to analyse broadband turbulent combustion phenomena from a three-dimensional direct numerical simulation of a low Mach number spatially-evolving turbulent planar premixed hydrogen/air jet flame. The focus of this investigation is on defining the metric of convergence of the DMD modes for broadband phenomena when both the temporal resolution and number of data snapshots can be varied independently. The residual is identified as an effective, even if imperfect, metric for judging convergence of the DMD modes. Other metrics – specifically, the convergence of the mode eigenvalues and the decay of the amplitudes of the modes – fail to capture convergence of the modes independently but do complete the information needed to evaluate the quality of the DMD analysis. 相似文献
18.
This paper analyses the downstream developments of the mean and the turbulent velocity fields of a plane jet. Based on the conservation of mass and the conservation of momentum, the mean-velocity half width (reflecting the jet spread rate) and the relative mass flow rate (jet entrainment) are related to the decay rate of the centreline mean velocity. These relations are not subject to self-preservation. Both analytical and experimental results suggest that the jet spread rate (K1) and the entrainment rate (K3) (and thus the decay rate K2) can be well estimated from the centreline velocity, i.e., K1 ≈ 0.6K2 and K3 ∝ K_2. The effect of initial mean velocity and RMS velocity profiles on the downstream mean velocity field appears to be embodied in the constants K1 K2 and K3. The analytical relationship for the self-preserving Reynolds shear stress, obtained for the first time, works well. 相似文献
19.
This paper analyses the downstream developments of the mean and the turbulent velocity fields of a plane jet. Based on the conservation of mass and the conservation of momentum, the mean-velocity half width (reflecting the jet spread rate) and the relative mass flow rate (jet entrainment) are related to the decay rate of the centreline mean velocity. These relations are not subject to self-preservation. Both analytical and experimental results suggest that the jet spread rate (K1) and the entrainment rate (K3) (and thus the decay rate K2) can be well estimated from the centreline velocity, i.e., K1 ≈ 0.6K2 and K3 ∝K2. The effect of initial mean velocity and RMS velocity profiles on the downstream mean velocity field appears to be embodied in the constants K1 K2 and K3. The analytical relationship for the self-preserving Reynolds shear stress, obtained for the first time, works well. 相似文献
20.
The interaction between turbulence and reactive scalar fields is discussed for the wrinkled flamelets regime of turbulent premixed combustion. Emphasis is placed on the effects associated with the turbulent straining term. In the regime of turbulent combustion under consideration, which corresponds to Karlovitz and Damköhler numbers such that Ka < 1 and Da > 1, a clear and simple formulation is proposed to explain and to model the influence of the correlation between velocity and reactive scalar gradients. This formulation is based on the conservative variables budget across one-dimensional premixed laminar flamelets. The analysis firmly confirms the dependence on both the Damköhler number and the expansion factor, a feature already foreseen in recent studies. Nevertheless, in contrast with previous work, (i) the scaling arguments used in the present contribution are different from those used in other recent proposals, and (ii) the proposed closures are not only deduced from dimensional arguments but also from the consideration of conservative variable budgets across laminar flamelets. The resulting functional dependence on the expansion factor is found to be influenced by the underlying one-dimensional flamelet representation and two possible closures are put forward to take this dependence into account. (iii) The two closures do not exhibit a proportionality to the mean scalar dissipation rate as suggested in previous studies but to the square of this quantity. This results in the presence of a second contribution proportional to in the modelled transport equation for the mean scalar dissipation rate, in addition to the modelled molecular dissipation term. (iv) Since previous Direct Numerical Simulation (DNS) studies have been essentially devoted to the influence of the Damköhler number, the present DNS validation step is focused on the effects of the expansion rate. To this purpose, the proposed models are validated against three available DNS databases obtained for turbulent premixed flames with different values of the density ratio between unburned and fully burned gases. 相似文献