首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present an alternative approach for the turbulence modelling in the single-relaxation-time lattice Boltzmann method (LBM) framework by treating the turbulence term as an extra forcing term, in addition to the traditional approach of modifying the relaxation time. We compare these two different approaches and their mixture in large-eddy simulation (LES) of three-dimensional decaying isotropic homogenous turbulence using the Smagorinsky model and the mixed similarity model. When the LES was conducted using the Smagorinsky model, where the Boussinesq eddy-viscosity approximation is adopted, the results showed that these three different implementations are equivalent. However, when the mixed similarity model is adopted, which is beyond the Boussinesq eddy-viscosity approximation, our results showed that an equivalent eddy-viscosity will lead to errors, while the forcing approach is more straightforward and accurate. This provides an alternative and more general framework of simulation of turbulence with models in LBM, especially when the Boussinesq eddy-viscosity approximation is invalid.  相似文献   

2.
The effect of finite Reynolds numbers and/or internal intermittency on the total kinetic energy and scalar energy transfers is examined in detail. For this purpose, two distinct models for velocity and scalar energy transfer are proposed in the specific context of freely decaying isotropic turbulence. The first one extends the already existing dynamical models (hereafter DYM, i.e. based on transport equations originated in Navier–Stokes and advection-diffusion transport equations). The second one relies on the characteristic time of the strain at a specific scale (hereafter SBM). Both models account for the Reynolds number dependence of the scaling exponent of the second-order structure functions, over a range of scales where such exponents may be defined, i.e. a restricted scaling range (RSR). Therefore, the models developed aim at reproducing the energy transfer over the RSR. The predicted energy transfer is very sensible to variations of the scaling exponent, especially at low Reynolds numbers. The approach towards the asymptotic 4/3 law is closely reproduced by the two models. The dynamical model reproduces the experimental results accurately especially in the vicinity of the Taylor microscale, while the SBM agrees almost perfectly with measurements at nearly all scales.  相似文献   

3.
The decay of turbulent kinetic energy in nearly isotropic grid turbulence has been studied extensively as a fundamental point of reference for turbulence theories and numerical simulations. Most studies have focused on nearly homogeneous turbulence characterised by power-law decay. Other studies have focused on so-called shearless mixing layers, in which two regions with the same mean velocity but distinctly different kinetic energy levels slowly diffuse into each other downstream thus providing information about spatial transport of turbulence. Here, we introduce and study another type of shearless turbulent flow. It has initially a nearly uniform spatial gradient of kinetic energy of the form k ~ β(y ? y0), where y is the spanwise position. In the experiments, this gradient is generated with the use of an active grid and screens mounted upstream of the wind-tunnel’s test section, iteratively designed to produce a uniform gradient of turbulent kinetic energy without mean velocity shear. Data are acquired using X-wire thermal anemometry at different spanwise and downstream locations. Profile measurements are used to quantify the constancy of the mean velocity and the linearity of the initial profile of kinetic energy. Measurements show that at all spanwise locations, the decay in the streamwise direction follows a power-law but with exponents n(y) that depend upon the spanwise location. The results are consistent with a decay of the form k/?u?2 = β(x/xref)?n(y)(y ? y0)/M. Results for the development of integral length scale, and for velocity skewness and flatness factors are also presented. Significant deviations from Gaussianity are observed especially for the spanwise velocity component in the lower kinetic energy region. Future experiments will be needed including measurements of the dissipation rate ? at sufficient accuracy, in order to unambiguously partition the energy decay into dissipation and spatial diffusion.  相似文献   

4.
5.
According to statistical turbulence theory, the ensemble averaged squared vorticity ρE is expected to grow not faster than . Solving a variational problem for maximal bulk enstrophy (E) growth, velocity fields were found for which the growth rate is as large as dE/dtE3. Using numerical simulations with well resolved small scales and a quasi-Lagrangian advection to track fluid subvolumes with rapidly growing vorticity, we study spatially resolved statistics of vorticity growth. We find that the volume ensemble averaged growth bound is satisfied locally to a remarkable degree of accuracy. Elements with dE/dtE3 can also be identified, but their growth tends to be replaced by the ensemble-averaged law when the intensities become too large.  相似文献   

6.
蔡伟华  李凤臣  张红娜 《中国物理 B》2011,20(12):124702-124702
Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.  相似文献   

7.
8.
李超  冉政 《物理学报》2015,64(3):34702-034702
湍流旋涡运动研究中一个基本理论问题是: 相对于Lamb矢量本身的大小而言, 对Lamb矢量的Helmholtz 分解中的有势部分占多大比例, 本文利用发展的基于精确解的各向同性湍流统计理论的结果, 给出了新的解析理论预测结果.  相似文献   

9.
燕秀林  冉政 《中国物理 B》2009,18(10):4360-4365
The starting point for this paper lies in the results obtained by Tatsumi (2004) for isotropic turbulence with the self-preserving hypothesis. A careful consideration of the mathematical structure of the one-point velocity distribution function equation obtained by Tatsumi (2004) leads to an exact analysis of all possible cases and to all admissible solutions of the problem. This paper revisits this interesting problem from a new point of view, and obtains a new complete set of solutions. Based on these exact solutions, some physically significant consequences of recent advances in the theory of homogenous statistical solution of the Navier--Stokes equations are presented. The comparison with former theory was also made. The origin of non--Gaussian character could be deduced from the above exact solutions.  相似文献   

10.
11.
The behaviour of the second-order Lagrangian structure functions on state-of-the-art numerical data both in two and three dimensions is studied. On the basis of a phenomenological connection between Eulerian space-fluctuations and the Lagrangian time-fluctuations, it is possible to rephrase the Kolmogorov 4/5-law into a relation predicting the linear (in time) scaling for the second-order Lagrangian structure function. When such a function is directly observed on current experimental or numerical data, it does not clearly display a scaling regime. A parameterisation of the Lagrangian structure functions based on Batchelor model is introduced and tested on data for 3d turbulence, and for 2d turbulence in the inverse cascade regime. Such parameterisation supports the idea, previously suggested, that both Eulerian and Lagrangian data are consistent with a linear scaling plus finite-Reynolds number effects affecting the small- and large timescales. When large-time saturation effects are properly accounted for, compensated plots show a detectable plateau already at the available Reynolds number. Furthermore, this parameterisation allows us to make quantitative predictions on the Reynolds number value for which Lagrangian structure functions are expected to display a scaling region. Finally, we show that this is also sufficient to predict the anomalous dependency of the normalised root mean squared acceleration as a function of the Reynolds number, without fitting parameters.  相似文献   

12.
In this paper we analytically compute the strength of nonlinear interactions in a triad, and the energy exchanges between wave-number shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimensions, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer rate is found to be local and forward. This result is due to the fact that the nonlocal triads occupy much less Fourier space volume than the local ones. The analytical results on three-dimensional shell-to-shell energy transfer match with their numerical counterparts. In two-dimensional turbulence, the energy transfer rates to the nearby shells are forward, but to the distant shells are backward; the cumulative effect is an inverse cascade of energy.  相似文献   

13.
1IntroductionDirectnumericalsimulation(DNS)becomesanimportanttoolinrecentresearchofturbulence[1].DNSofcompressibleturbulenceismoredifficultthanthatoftheincompressibleturbulence.WhentheturbulentMachnumberisgreaterthan0.3theshockletsmayappearinthecompressibleturbulentflowfields.Thereasonandmechanismofshockletsexistencearenotclearyet.TheturbulentMachnumberinDNScannotbeveryhighwiththepresentexistingnumericalmethodsandcomputerresource.Fortheproblemofcompressibleisotropicturbulencewiththeinitia…  相似文献   

14.
In deducing the consequences of the Direct Interaction Approximation, Kraichnan was sometimes led to consider the properties of special classes of nonlinear interactions in degenerate triads in which one wavevector is very small. Such interactions can be described by simplified models closely related to elementary closures for homogeneous isotropic turbulence such as the Heisenberg and Leith models. These connections can be exploited to derive considerably improved versions of the Heisenberg and Leith models that are only slightly more complicated analytically. This paper applies this approach to derive some new simplified closure models for passive scalar advection and investigates the consistency of these models with fundamental properties of scalar turbulence. Whereas some properties, such as the existence of the Kolmogorov–Obukhov range and the existence of thermal equilibrium ensembles, follow the velocity case closely, phenomena special to the scalar case arise when the diffusive and viscous effects become important at different scales of motion. These include the Batchelor and Batchelor–Howells–Townsend ranges pertaining, respectively, to high and low molecular Schmidt number. We also consider the spectrum in the diffusive range that follows the Batchelor range. We conclude that improved elementary models can be made consistent with many nontrivial properties of scalar turbulence, but that such models have unavoidable limitations.  相似文献   

15.
A modification to the PANS (partially averaged Navier-Stokes) model is proposed to simulate unsteady cavitating flows. In the model, the parameter f k is modified to vary as a function of the ratios between the water density and the mixture density in the local flows. The objective of this study is to validate the modified model and further understand the interaction between turbulence and cavitation around a Clark-Y hydrofoil. The comparisons between the numerical and experiment results show that the modified model can be improved to predict the cavity evolution, vortex shedding frequency and the lift force fluctuating in time fairly well, as it can effectively modulate the eddy viscosity in the cavitating region and various levels of physical turbulent fluctuations are resolved. In addition, from the computational results, it is proved that cavitation phenomenon physically influences the turbulent level, especially by the vortex shedding behaviors. Also, the mean u-velocity profiles demonstrate that the attached cavity thickness can alter the local turbulent shear layer.  相似文献   

16.
This study proposes a new forcing scheme suitable for massively-parallel finite-difference simulations of stationary isotropic turbulence. The proposed forcing scheme, named reduced-communication forcing (RCF), is based on the same idea as the conventional large-scale forcing scheme, but requires much less data communication, leading to a high parallel efficiency. It has been confirmed that the RCF scheme works intrinsically in the same manner as the conventional large-scale forcing scheme. Comparisons have revealed that a fourth-order finite-difference model run in combination with the RCF scheme (FDM-RCF) is as good as a spectral model, while requiring less computational costs. For the range 80 < Reλ < 540, where Reλ is the Taylor microscale-based Reynolds number, large computations using the FDM-RCF scheme show that the Reynolds dependences of skewness and flatness factors have similar power-laws as found in previous studies.  相似文献   

17.
Classical decay laws of isotropic turbulence usually derived from the von Kármán–Howarth equation are essentially based on two paradigms. First, scaling symmetries of space and time, both tracing back to the Navier–Stokes equations in the limit of large Reynolds numbers (or r?η), give rise to a temporal power-law decay for the turbulent kinetic energy and at the same time an algebraic growth of the integral length scale at an exponent that is uniquely coupled to the latter energy decay. Second, global invariants such as Birkhoff or Loitsianskii integrals determine the exponent of both power laws. We presently show that this class of decay laws may be considerably extended considering the entire set of multi-point correlation equations that admit a much wider class of symmetries. It was recently shown that these new symmetries are of paramount importance, e.g. in deriving the logarithmic law of the wall being an analytic solution of the multi-point equations. For the present case, it is particularly an additional scaling group, which we call statistical scaling group, that gives rise to two additional families of ‘canonical’ decay laws including those with an exponential characteristic for both the kinetic energy and the integral length scale. Finally, a second rather generic group admitted by all linear differential equations corresponding to the superposition principle induces an infinite set of scaling laws of rather complex form that may match rather generic initial conditions. All scaling laws are analyzed in the light of the above-mentioned integral invariants that have been further extended in the present contribution to an exponential-type invariant.  相似文献   

18.
19.
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.  相似文献   

20.
Direct numerical simulations(DNS) were performed for the forced homogeneous isotropic turbulence(FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects.The finite elastic non-linear extensibility-Peterlin model(FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution.Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters,including turbulent kinetic energy spectra,enstrophy and strain,velocity structure function,small-scale intermittency,etc.A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy.It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives.The enstrophy and the strain fields in the FHIT of the polymer solution were remarkably weakened as compared with their Newtonian counterparts.The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution.However,the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution,within the presently simulated range of Weissenberg numbers,had no distinct differences compared with that of the Newtonian fluid case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号