首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A necessary condition for the accurate prediction of turbulent flows using large-eddy simulation (LES) is the correct representation of energy transfer between the different scales of turbulence in the LES. For scalar turbulence, transfer of energy between turbulent length scales is described by a transport equation for the second moment of the scalar increment. For homogeneous isotropic turbulence, the underlying equation is the well-known Yaglom equation. In the present work, we study the turbulent mixing of a passive scalar with an imposed mean gradient by homogeneous isotropic turbulence. Both direct numerical simulations (DNS) and LES are performed for this configuration at various Schmidt numbers, ranging from 0.11 to 5.56. As the assumptions made in the derivation of the Yaglom equation are violated for the case considered here, a generalised Yaglom equation accounting for anisotropic effects, induced by the mean gradient, is derived in this work. This equation can be interpreted as a scale-by-scale energy-budget equation, as it relates at a certain scale r terms representing the production, turbulent transport, diffusive transport and dissipation of scalar energy. The equation is evaluated for the conducted DNS, followed by a discussion of physical effects present at different scales for various Schmidt numbers. For an analysis of the energy transfer in LES, a generalised Yaglom equation for the second moment of the filtered scalar increment is derived. In this equation, new terms appear due to the interaction between resolved and unresolved scales. In an a-priori test, this filtered energy-budget equation is evaluated by means of explicitly filtered DNS data. In addition, LES calculations of the same configuration are performed, and the energy budget as well as the different terms are thereby analysed in an a-posteriori test. It is shown that LES using an eddy viscosity model is able to fulfil the generalised filtered Yaglom equation for the present configuration. Further, the dependence of the terms appearing in the filtered energy-budget equation on varying Schmidt numbers is discussed.  相似文献   

2.
3.
《Revue Generale de Thermique》1996,35(412):232-242
Numerical prediction of the structure of high temperature axisymmetric turbulent jets. Turbulent axisymmetric jets at high temperature are studied numerically by using first and second order turbulence models. Regarding the temperature fields, on which we concentrate in this work, predictions with both types of models do not show large differences. In general, predictions agree well with the measurements; the existing differences are usually favorable for the second order model. The effect of solving a transport equation for the scalar dissipation rate on the prediction of the mechanical to scalar time scale ratio and on the prediction of the scalar fluctuations is studied. The influence of varying the density ratio on parameters such as the axial decay rates of the temperature and velocity and the turbulence intensity are studied. Two definitions of the mixing efficiency are introduced. According to both definitions, the mixing efficiency decreases with increasing effects of buoyancy.  相似文献   

4.
Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or viscous fingering, provides a powerful mechanism to increase fluid-fluid interfacial area and enhance mixing. Here we describe the dissipative structure of miscible viscous fingering, and propose a two-equation model for the scalar variance and its dissipation rate. Our analysis predicts the optimum range of viscosity contrasts that, for a given Péclet number, maximizes interfacial area and minimizes mixing time. In the spirit of turbulence modeling, the proposed two-equation model permits upscaling dissipation due to fingering at unresolved scales.  相似文献   

5.
The maxima of the scalar dissipation rate in turbulence appear in the form of sheets and correspond to the potentially most intensive scalar mixing events. Their cross section extension determines a locally varying diffusion scale of the mixing process and extends the classical Batchelor picture of one mean diffusion scale. The distribution of the local diffusion scales is analyzed for different Reynolds and Schmidt numbers with a fast multiscale technique applied to very high-resolution simulation data. The scales always take values across the whole Batchelor range and beyond. Furthermore, their distribution is traced back to the distribution of the contractive short-time Lyapunov exponent of the flow.  相似文献   

6.
A type of turbulence which is next to local isotropy in order of simplicity, but which corresponds more closely to turbulent flows encountered in practice, is locally axisymmetric turbulence. A representation of the second and third order structure function tensors of homogeneous axisymmetric turbulence is given. The dynamic equation relating the second and third order scalar structure functions is derived. When axisymmetry turns into isotropy, this equation is reduced to the well-known isotropic result: Kolmogorov's equation. The corresponding limiting form is also reduced to the well-known isotropic limiting form of Kolmogorov's equation. The new axisymmetric and theoretical results may have important consequences on several current ideas on the fine structure of turbulence, such as ideas developed by analysis based on the isotropic dissipation rate or such as extended self similarity (ESS) and the scaling laws for the n-order structure functions. Received 20 October 2000 and Received in final form 25 May 2001  相似文献   

7.
Decaying homogeneous isotropic turbulence with an imposed mean scalar gradient is investigated numerically, thanks to a specific eddy-damped quasi-normal Markovian closure developed recently for passive scalar mixing in homogeneous anisotropic turbulence (BGC). The present modelling is compared successfully with recent direct numerical simulations and other models, for both very large and small Prandtl numbers. First, scalings for the cospectrum and scalar variance spectrum in the inertial range are recovered analytically and numerically. Then, at large Reynolds numbers, the decay and growth laws for the scalar variance and mixed velocity–scalar correlations, respectively, derived in BGC, are shown numerically to remain valid when the Prandtl number strongly departs from unity. Afterwards, the normalised correlation ρwθ is found to decrease in magnitude at a fixed Reynolds number when Pr either increases or decreases, in agreement with earlier predictions. Finally, the small scales return to isotropy of the scalar second-order moments is found to depend not only on the Reynolds number, but also on the Prandtl number.  相似文献   

8.
Accurate prediction of non-premixed turbulent combustion using large eddy simulation (LES) requires detailed modelling of the mixing between fuel and oxidizer that occurs at scales smaller than the LES filterwidth. The small-scale mixing process can be quantitatively characterized by two related variables, the subfilter scalar variance and the subfilter scalar dissipation rate. A recently proposed alternative dynamic modelling procedure for the subfilter scale dissipation rate, designed for use with transport equation based models for subfilter scalar variance, is analysed in this work. This new dynamic non-equilibrium modelling approach produces a nonlinear interaction between variance and dissipation rate predictions that makes it difficult to isolate the performance of any single modelling component in a conventional LES simulation. To gain a better understanding of the new model, a three-part study is undertaken here. The first part of the study uses a priori analysis to examine some novel aspects of the model’s computation and guide its practical implementation. In the second part of the study, detailed a posteriori analysis of the model is performed. This analysis suggests that the dynamic estimate of the dissipation rate model coefficient helps to compensate for over-prediction of variance production rates and improves the accuracy of variance prediction. However, improved modelling of the variance production term, which in turn depends on the accuracy of models for the subfilter scalar flux, is necessary to allow both the scalar variance and dissipation rate to be predicted accurately. Therefore, the third part of the study examines the effect of the scalar flux model on the predictions of the dynamic non-equilibrium model. Use of a mixed model for the fluxes, rather than a gradient-diffusion-only model, is found to improve variance predictions in some cases.  相似文献   

9.
The velocity-scalar filtered joint density function (FJDF) used in large eddy simulation (LES) of turbulent combustion is experimentally studied. Measurements are made in the fully developed region of an axisymmetric turbulent jet using an array consisting of three X-wires and resistance-wire temperature sensors. Filtering in the cross-stream and streamwise directions is realized by using the array and by invoking Taylor’s hypothesis, respectively. The means of the FJDF conditional on the subgrid-scale (SGS) turbulent kinetic energy and the SGS scalar variance at a given location range from close to joint normal to bimodal with the peaks separated in both velocity and scalar spaces, which correspond to qualitatively different mixing regimes. For close to joint normal FJDFs, the SGS fields are well mixed. For bimodal FJDFs, the conditionally filtered scalar diffusion and dissipation strongly depend on the SGS velocity and scalar, consistent with a combination of diffusion layers and plane strain in the SGS fields, which is similar to the counter-flow model for laminar flamelets. The results suggest that in LES, both mixing regimes could potentially be modeled accurately. The velocity field affects the SGS variance and the filtered scalar dissipation rate primarily by changing the degree of nonequilibrium of the SGS scalar and the SGS time scale, respectively. This study further demonstrates the importance of including velocity in mixing models.  相似文献   

10.
Anisotropy is induced by body forces and/or mean large-scale gradients in turbulent flows. For flows without energy production, the dynamics of second-order velocity or second-order vorticity statistics are essentially governed by triple correlations, which are at the origin of the anisotropy that penetrates towards the inertial range, deeply altering the cascade and the eventual dissipation process, with a series of consequences on the evolution of homogeneous turbulence statistics: in the case of rotating turbulence, the anisotropic spectral transfer slaves the multiscale anisotropic energy distribution; nonlinear dynamics are responsible for the linear growth in terms of Ωt of axial integral length-scales; third-order structure functions, derived from velocity triple correlations, exhibit a significant departure from the 4/5 Kolmogorov law. We describe all these implications in detail, starting from the dynamical equations of velocity statistics in Fourier space, which yield third-order correlations at three points (triads) and allow the explicit removal of pressure fluctuations. We first extend the formalism to anisotropic rotating turbulence with ‘production’, in the presence of mean velocity gradients in the rotating frame. Second, we compare the spectral approach at three points to the two-point approach directly performed in physical space, in which we consider the transport of the scalar second-order structure function ?(δq)2?. This calls into play componental third-order correlations ?(δq)2δu?(r) in axisymmetric turbulence. This permits to discuss inhomogeneous anisotropic effects from spatial decay, shear, or production, as in the central region of a rotating round jet. We show that the above-mentioned important statistical quantities can be estimated from experimental planar particle image velocimetry, and that explicit passage relations systematically exist between one- and two-point statistics in physical and spectral space for second-order tensors, but also sometimes for third-order tensors that are involved in the dynamics.  相似文献   

11.
The thin interface separating the inner turbulent region from the outer irrotational fluid is analysed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. The conditional statistics for velocity are in remarkable agreement with the results for other free shear flows available in the literature, such as turbulent jets and wakes. In addition, an analysis of the passive scalar field in the vicinity of the interface is presented. It is shown that the scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number (Sc). In the present study, such a strong jump is observed for a scalar with Sc ≈ 1. Conditional statistics of kinetic energy and scalar dissipation are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterised by a strong peak very close to the interface. Finally, it is shown that the geometric features of the interfaces correlate with relatively large scale structures as visualised by low-pressure isosurfaces.  相似文献   

12.
应用直接数值模拟数据,从标量湍流传输的三波关系出发,进行湍流及标量湍流传输谱的多尺度分析,研究不同尺度间的能量传输性质,证实标量能量的传输与湍动能传输具有不同性质,大尺度速度脉动对标量传输有较大贡献,尤其是与标量小尺度脉动的相互作用,使标量模拟需要有比速度场更高的网格分辨率;并发现标量湍流的能量传输具有明显的非局部性;另外,定义了能量传输系数,发现在相同的Re数和Pe数条件下,标量湍流的对流惯性较速度脉动的惯性子区宽.  相似文献   

13.
Viscous dissipation and its contribution to turbulent kinetic energy (TKE) budget are investigated in the asymmetric jet–wake flow of a forward-curved centrifugal turbomachine. Single-plane three-dimensional turbulent data are obtained using stereoscopic particle image velocimetry (SPIV). Viscous dissipation is indirectly estimated from subgrid-scale (SGS) dissipation (SGS energy flux) by filtering velocity field using a top-hat filter. The filter scale should be within the inertial sub-range and this is ensured by spectral analysis of the measured field. Reduction of turbulent energy flux for smaller filter scales plus underestimation of viscous dissipation as compared with other TKE terms both suggest the presence of spectral shortcut. This bypass energy transfer (from intermediate scales towards dissipative scales) works in parallel with direct SGS energy transfer and affects the classical energy cascade. Analysis of TKE budget in the rotor exit region shows significant radial/circumferential variations in the contributing terms. These variations are mainly due to jet–wake–volute interactions, circumferential asymmetry of volute area and expansion of flow toward the fan outlet.  相似文献   

14.
D. Laveder  T. Passot  P.L. Sulem 《Physics letters. A》2013,377(23-24):1535-1541
The randomly driven Cohen–Kulsrud–Burgers equation is used to study the influence of viscous intermediate shocks (IS) on Alfvénic turbulence. Some of these structures are unstable and undergo gradient collapse leading, as the viscosity is reduced, to increasingly intermittent dissipation bursts. The slow decay at intermediate scales of stable IS prevents the existence of a usual inertial range. Furthermore, the dissipation is unable to adiabatically compensate for the energy injection, making the total energy sensitive to the viscosity parameter. Turbulence thus looses its universal character. Preliminary simulations extend these conclusions to magnetohydrodynamic equations with anisotropic viscosity, typical of strongly magnetized plasmas.  相似文献   

15.
ABSTRACT

We develop a theory for the cascade mixing terms in a moment closure approach to binary active scalar mixing in variable-density turbulence. To address the variable-density complications we apply, as a principle and constraint, the conservation of the probability density function (PDF) through a Fokker–Planck equation with bounded sample space whose attractor is the beta PDF with skewness. Mixing is related to a single-point PDF as a realisability principle to provide mathematically rigorous expressions for the small scale statistics in terms of largescale moments. The problem of the unknown small-scale mixing is replaced with the determination of the drift and diffusion terms of a Fokker–Planck equation in a beta-PDF-convergent stochastic process. We find that realisability of a beta-convergent process requires the mixing time-scale ratio, taken as a constant in passive scalar mixing, to be a function of the mean mass fraction, mean fluid density, the Atwood number, the density-volume correlation and moments of the density field. We develop and compare the new model with direct numerical simulations data of non-stationary homogeneous variable-density turbulence.  相似文献   

16.
A mixing controlled direct chemistry (MCDC) combustion model with sub-grid scale (SGS) mixing effects and chemical kinetics has been evaluated for Large Eddy Simulation (LES) of diesel engine combustion. The mixing effect is modelled by a mixing timescale based on mixture fraction variance and sub-grid scalar dissipation rate. The SGS scalar dissipation rate is modelled using a similarity term and a scaling factor from the analysis of Direct Numerical Simulation (DNS) data. The chemical reaction progress is estimated from a kinetic timescale based on local internal energy change rate and equilibrium state internal energy. An optical research engine operating at conventional operating conditions and Low Temperature Combustion (LTC) conditions was used for evaluation of the combustion model. From the simulation results, the effect of SGS scalar mixing is evaluated at different stages of combustion. In the context of LES, the new approach provides improved engine modelling results compared to the Direct Chemistry Solver (DCS) combustion model.  相似文献   

17.
The mixing of passive scalars of decreasing diffusivity, advected in each case by the same three-dimensional Navier-Stokes turbulence, is studied. The mixing becomes more isotropic with decreasing diffusivity. The local flow in the vicinity of steepest negative and positive scalar gradients is in general different, and its behavior is studied for various values of the scalar diffusivity. Mixing approaches monofractal properties with diminishing diffusivity. We consider these results in the context of possible singularities of scalar dissipation.  相似文献   

18.
Direct numerical simulations (DNS) of low and high Karlovitz number (Ka) flames are analysed to investigate the behaviour of the reactive scalar sub-grid scale (SGS) variance in premixed combustion under a wide range of combustion conditions (regimes). An order of magnitude analysis is performed to assess the importance of various terms in the variance evolution equation and the analysis is validated using the DNS results. This analysis sheds light on the relative behaviour among turbulent transport and production, scalar dissipation and chemical processes involved in the evolution of the SGS variance at different Ka. The common expectation is that the variance equation shifts from a reaction-dissipation balance at low Ka to a production–dissipation balance at high Ka with diminishing reaction contribution. However, in large eddy simulation (LES), a high Ka alone does not make the reaction term negligible, as the relative importance of the reaction term has a concurrent increase with filter size. The filter size can be relatively large compared with the Kolmogorov length scale in practical LES of high Ka flames, and as a consequence a reaction–production–dissipation balance may prevail in the variance equation even in a high Ka configuration, and this possibility is quantified using the DNS analysis in this work. This has implications from modelling perspectives, and therefore two commonly used closures in LES for the SGS scalar dissipation rate are investigated a priori to estimate the importance of the above balance in LES modelling. The results are explained to highlight the interplay among turbulence, chemistry and dissipation processes as a function of Ka.  相似文献   

19.
Isothermal and reactive turbulent opposed flows are presented, which are appropriate to test the applicability and performance of models for turbulence, mixing, chemical reaction, and turbulence-chemistry interaction. Transient flow and scalar fields are measured using laser Doppler velocimetry and one-dimensionally resolved Raman/Rayleigh spectroscopy. Aside of statistical moments of temperature, mean species, and velocity components, scalar dissipation rate across the mixing and reaction layer is determined on a single-shot base. Using large eddy simulation in connection with a steady flamelet model, it is shown how numerical data can serve to estimate the influence of experimental noise upon a measured quantity, such as scalar dissipation. As a key result, it is shown that an increase in scalar rate of dissipation by chemical reactions is caused by a significant increase in the mixture fraction diffusivity, which outweighs the decrease in mixture fraction gradients. In mixture fraction space, local maxima of scalar dissipation rate are found on the rich side, which cannot be correctly reproduced by the steady flamelet model assuming equal species diffusivity. Furthermore, the impact of experimental noise on conditional probability density functions of scalar dissipation rate is shown (exemplary) to lead to erroneous conclusions from experimental data.  相似文献   

20.
The effects of body force/external pressure gradient on the statistical behaviours of the reaction progress variable variance and the terms of its transport equation have been investigated for different turbulence intensities using DNS data of statistically planar flames. Since the extent of flame wrinkling increases with the strengthening of body force promoting unstable stratification, the scalar variance has been found to decrease under strong body force promoting stability. This trend is particularly strong for low turbulence intensities where the probability density function of the reaction progress variable cannot be approximated by a bimodal distribution. Therefore, an algebraic relation for the reaction progress variable variance, derived based on a presumed bimodal probability density function of reaction progress variable, cannot be used for general flow conditions. The contributions of chemical reaction and scalar dissipation rates in the scalar variance transport equation remain leading order source and sink, respectively for all cases irrespective of the strength and direction of the body force. The counter-gradient type transport is found to weaken with increasing body force magnitude when the body force is directed from the heavier unburned gas to the lighter burned gas side of the flame brush, and vice versa. Although a scalar dissipation rate-based reaction rate closure can be utilised to model the reaction rate contribution to the scalar variance transport accurately, the dissipation rate contribution due to the gradient of the Favre-averaged reaction progress variable cannot be ignored and it plays a key role for large magnitudes of body force promoting stable stratification. An algebraic closure of the scalar dissipation rate, originally proposed for high Damköhler number combustion, has been modified for the thin reaction zones regime combustion by incorporating the effects of Froude number. This model has been shown to predict the scalar dissipation rate accurately for all cases considered here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号