首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh–Taylor mixing layer is performed using the 10th-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analysed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity. It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier–Stokes models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.  相似文献   

2.
In the variational multiscale (VMS) approach to large eddy simulation (LES), the governing equations are projected onto an a priori scale partitioning of the solution space. This gives an alternative framework for designing and analyzing turbulence models. We describe the implementation of the VMS LES methodology in a high order spectral element method with a nodal basis, and discuss the properties of the proposed scale partitioning. The spectral element code is first validated by doing a direct numerical simulation of fully developed plane channel flow. The performance of the turbulence model is then assessed by several coarse grid simulations of channel flow at different Reynolds numbers.  相似文献   

3.
We analyze the impact of discretization errors on the performance of the Smagorinsky model in large eddy simulations (LES). To avoid difficulties related to solid boundaries, we focus on decaying homogeneous turbulence. It is shown that two numerical implementations of the model in the same finite volume code lead to significantly different results in terms of kinetic energy decay, time evolutions of the viscous dissipation and kinetic energy spectra. In comparison with spectral LES results, excellent predictions are however obtained with a novel formulation of the model derived from the discrete Navier–Stokes equations. We also highlight the effect of discretization errors on the measurement of physical quantities that involve scales close to the grid resolution.  相似文献   

4.
An important emerging scientific issue is the real time filtering through observations of noisy turbulent signals for complex systems as well as the statistical accuracy of spatio-temporal discretizations for such systems. These issues are addressed here in detail for the setting with plentiful observations for a scalar field through explicit mathematical test criteria utilizing a recent theory [A.J. Majda, M.J. Grote, Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems, Proceedings of the National Academy of Sciences 104 (4) (2007) 1124–1129]. For plentiful observations, the number of observations equals the number of mesh points. These test criteria involve much simpler decoupled complex scalar filtering test problems with explicit formulas and elementary numerical experiments which are developed here as guidelines for filter performance. The theory includes information criteria to avoid filter divergence with large model errors, asymptotic Kalman gain, filter stability, and accurate filtering with small ensemble size as well as rigorous results delineating the role of various turbulent spectra for filtering under mesh refinement. These guidelines are also applied to discrete approximations for filtering the stochastically forced dissipative advection equation with very turbulent and noisy signals with either an equipartition of energy or ?5/3 turbulent spectrum with infrequent observations as severe test problems. The theory and companion simulations demonstrate accurate statistical filtering in this context with implicit schemes with large time step with very small ensemble sizes and even with unstable explicit schemes under appropriate circumstances provided the filtering strategies are guided by the off-line theoretical criteria. The surprising failure of other strongly stable filtering strategies is also explained through these off-line criteria.  相似文献   

5.
理论研究了啁啾脉冲频域干涉仪的时域相移重建技术,对于接近实际的频谱干涉条纹,分别采用傅里叶变换和小波变换的方法完成了时域相位扰动信号的重建。傅里叶变换方法产生的重建误差受到滤波参数的影响,相对而言,小波变换方式解谱过程中,不需要进行特意的滤波操作,从而避免了重建结果存在误差不确定性的问题。  相似文献   

6.
Large eddy simulations (LES) of a lattice Boltzmann magnetohydrodynamic (LB-MHD) model are performed for the unstable magnetized Kelvin–Helmholtz jet instability. This algorithm is an extension of Ansumali et al. [1] to MHD in which one performs first an expansion in the filter width on the kinetic equations followed by the usual low Knudsen number expansion. These two perturbation operations do not commute. Closure is achieved by invoking the physical constraint that subgrid effects occur at transport time scales. The simulations are in very good agreement with direct numerical simulations.  相似文献   

7.
Laminar separation bubbles develop over many blades and airfoils at moderate angles of attack and Reynolds numbers ranging from 104 to 105. More accurate simulation tools are necessary to enable higher fidelity design optimisation for these airfoils and blades as well as to test flow control schemes. Following previous investigators, an equivalent problem is formulated by imposing suitable boundary conditions for flow over a flat plate which allows to use a high accuracy spectral solver. Large eddy simulation (LES) of such a flow were performed at drastically reduced resolution to assess the accuracy of several LES modelling approaches: the explicit dynamic Smagorinsky model, implicit LES, and the truncated Navier–Stokes approach (TNS). To mimic dissipation that occurs in implicit LES, the solution on a coarse mesh is filtered at every time step and two different filter strengths are used. In the TNS approach, the solution is filtered periodically, every few hundred time steps. The performance of each approach is evaluated against benchmark direct numerical simulation (DNS) data focusing on pressure and skin friction distributions, which are critical to airfoil designers. TNS results confirm that periodic filtering can act as an apt substitute for explicit subgrid-scale models, whereas filtering at every time step demonstrates the dependence of implicit LES on details of numerics.  相似文献   

8.
通过分析显式有限差分格式的数值色散和数值耗散,导出一个适于有限差分格式的通用色散-耗散条件.根据群速度和耗散率之间的物理关系,确定了用以抑制数值解中伪高波数波所需要的适度耗散.在以往发展的低耗散加权基本无振荡格式WENO-CU6-M2上的应用表明,该条件可用作优化线性或非线性有限差分格式的色散和耗散的通用指导准则.此外,满足色散-耗散条件的改进WENO-CU6-M2格式还可选作低分辨率数值模拟,以三维Taylor-Green涡向湍流转捩和自相似能量衰减问题展现了它的这种能力.与经典的动态Smagorinsky亚网格尺度模型相比,在Reynolds数Re=400~3000条件下,无黏和黏性Taylor-Green涡的数值模拟结果均得到明显改善.在保持激波捕捉特性同时,与最新的隐式大涡模拟模型的计算效果相当.   相似文献   

9.
A parallel adaptive mesh refinement (AMR) algorithm is proposed and applied to the prediction of steady turbulent non-premixed compressible combusting flows in three space dimensions. The parallel solution-adaptive algorithm solves the system of partial-differential equations governing turbulent compressible flows of reactive thermally perfect gaseous mixtures using a fully coupled finite-volume formulation on body-fitted multi-block hexahedral meshes. The compressible formulation adopted herein can readily accommodate large density variations and thermo-acoustic phenomena. A flexible block-based hierarchical data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and to facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. For calculations of near-wall turbulence, an automatic near-wall treatment readily accommodates situations during adaptive mesh refinement where the mesh resolution may not be sufficient for directly calculating near-wall turbulence using the low-Reynolds-number formulation. Numerical results for turbulent diffusion flames, including cold- and hot-flow predictions for a bluff-body burner, are described and compared to available experimental data. The numerical results demonstrate the validity and potential of the parallel AMR approach for predicting fine-scale features of complex turbulent non-premixed flames.  相似文献   

10.
We present a new multigrid scheme for solving the Poisson equation with Dirichlet boundary conditions on a Cartesian grid with irregular domain boundaries. This scheme was developed in the context of the Adaptive Mesh Refinement (AMR) schemes based on a graded-octree data structure. The Poisson equation is solved on a level-by-level basis, using a “one-way interface” scheme in which boundary conditions are interpolated from the previous coarser level solution. Such a scheme is particularly well suited for self-gravitating astrophysical flows requiring an adaptive time stepping strategy. By constructing a multigrid hierarchy covering the active cells of each AMR level, we have designed a memory-efficient algorithm that can benefit fully from the multigrid acceleration. We present a simple method for capturing the boundary conditions across the multigrid hierarchy, based on a second-order accurate reconstruction of the boundaries of the multigrid levels. In case of very complex boundaries, small scale features become smaller than the discretization cell size of coarse multigrid levels and convergence problems arise. We propose a simple solution to address these issues. Using our scheme, the convergence rate usually depends on the grid size for complex grids, but good linear convergence is maintained. The proposed method was successfully implemented on distributed memory architectures in the RAMSES code, for which we present and discuss convergence and accuracy properties as well as timing performances.  相似文献   

11.
Verma  Mahendra K.  Kumar  Shishir 《Pramana》2004,63(3):553-561
In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters. The parameters calculated using field theory have been taken from recent papers by Verma [1,2]. We have carried out LES on 643 grid. These results match quite well with direct numerical simulations of 1283. We show that proper choice of parameter is necessary in LES.  相似文献   

12.
A 3D parallel adaptive mesh refinement (AMR) scheme is described for solving the partial-differential equations governing ideal magnetohydrodynamic (MHD) flows. This new algorithm adopts a cell-centered upwind finite-volume discretization procedure and uses limited solution reconstruction, approximate Riemann solvers, and explicit multi-stage time stepping to solve the MHD equations in divergence form, providing a combination of high solution accuracy and computational robustness across a large range in the plasma β (β is the ratio of thermal and magnetic pressures). The data structure naturally lends itself to domain decomposition, thereby enabling efficient and scalable implementations on massively parallel supercomputers. Numerical results for MHD simulations of magnetospheric plasma flows are described to demonstrate the validity and capabilities of the approach for space weather applications  相似文献   

13.
A new electromagnetic particle-in-cell (EMPIC) model with adaptive mesh refinement (AMR) has been developed to achieve high-performance parallel computation in distributed memory system. For minimizing the amount and frequency of inter-processor communications, the present study uses the staggering grid scheme with the charge conservation method, which consists only of the local operations. However, the scheme provides no numerical damping for electromagnetic waves regardless of the wavenumber, which results in significant noise in the refinement region that eventually covers over physical signals. In order to suppress the electromagnetic noise, the present study introduces a smoothing method which gives numerical damping preferentially for short wavelength modes. The test simulations show that only a weak smoothing results in drastic reduction in the noise, so that the implementation of the AMR is possible in the staggering grid scheme. The computational load balance among the processors is maintained by a new method termed the adaptive block technique for the domain decomposition parallelization. The adaptive block technique controls the subdomain (block) structure dynamically associated with the system evolution, such that all the blocks have almost the same number of particles. The performance of the present code is evaluated for the simulations of the current sheet evolution. The test simulations demonstrate that the usage of the adaptive block technique as well as the staggering grid scheme enhances significantly the parallel efficiency of the AMR-EMPIC model.  相似文献   

14.
The effects of different filtering strategies on the statistical properties of the resolved-to-subfilter scale (SFS) energy transfer are analysed in forced homogeneous and isotropic turbulence. We carry out a-priori analyses of the statistical characteristics of SFS energy transfer by filtering data obtained from direct numerical simulations with up to 20483 grid points as a function of the filter cutoff scale. In order to quantify the dependence of extreme events and anomalous scaling on the filter, we compare a sharp Fourier Galerkin projector, a Gaussian filter and a novel class of Galerkin projectors with non-sharp spectral filter profiles. Of interest is the importance of Galilean invariance and we confirm that local SFS energy transfer displays intermittency scaling in both skewness and flatness as a function of the cutoff scale. Furthermore, we quantify the robustness of scaling as a function of the filtering type.  相似文献   

15.
In this work, the compressible governing equations for the hybrid Reynolds-averaged/large-eddy simulations are formally derived by applying a hybrid filter to the Navier–Stokes equations. This filter is constructed by linearly combining the Reynolds-average (RANS) and large-eddy simulation (LES) operators with a continuous blending function. The derived hybrid equations include additional terms that represent the interactions between RANS and LES formulations. The relevance of these terms is investigated in flat-plate turbulent boundary layer simulations and indicate that these additional terms play a fundamental role in compensating for the turbulence that is neither modeled nor resolved in the transition region between RANS and LES. Results also show that when the additional terms are included, the calculations are not very sensitive to the blending function implemented in the hybrid filter. In the contrary, when these terms are neglected and a step function is implemented in the hybrid filter, nonphysical discontinuities are predicted in the flow statistics.  相似文献   

16.
Turbulent piloted Bunsen flames of stoichiometric methane–air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.  相似文献   

17.
A new approach for the construction of implicit subgrid-scale models for large-eddy simulation based on adaptive local deconvolution is proposed. An approximation of the unfiltered solution is obtained from a quasi-linear combination of local interpolation polynomials. The physical flux function is modeled by a suitable numerical flux function. The effective subgrid-scale model can be determined by a modified-differential equation analysis. Discretization parameters which determine the behavior of the implicit model in regions of developed turbulence can be adjusted so that a given explicit subgrid-scale model is recovered to leading order in filter width. Alternatively, improved discretization parameters can be found directly by evolutionary optimization. Computational results for stochastically forced and decaying Burgers turbulence are provided. An assessment of the computational experiments shows that results for a given explicit subgrid-scale model can be matched by computations with an implicit representation. A considerable improvement can be achieved if instead of the parameters matching an explicit model discretization parameters determined by evolutionary optimization are used.  相似文献   

18.
界面捕捉Level Set方法的(AMR)数值模拟   总被引:3,自引:1,他引:2  
宫翔飞  张树道  江松 《计算物理》2006,23(4):391-395
在流体力学方程的计算中采用高精度WENO格式,用AMR(adaptive mesh refinement)方法提高流场局部分辨率,在采用Level Set函数标定物质界面的计算中用GFM(ghost fluid method)方法进行界面处理,尝试将AMR技术与界面追踪技术相互融合并应用于数值模拟,对不同的模拟结果进行了比较.  相似文献   

19.
刘同新  马宝峰 《计算物理》2014,31(3):307-313
采用三维Taylor-Green涡作为研究对象,利用工程中常用的低阶数值格式,研究格式本身的数值误差对大涡模拟计算的影响.结果表明:三种数值格式的数值耗散行为都与亚格子模型行为类似,即在小雷诺数下,流场比较光滑时,耗散很小,当雷诺数增加,流动转捩为湍流,流场梯度增大,耗散显著增大.对于MUSCL格式和二阶有界中心格式,在高雷诺数下,亚格子尺度模型没有明显改善计算结果,但也没有使计算结果恶化.中心格式相比其它两种格式,数值耗散最小,但是在高雷诺数湍流情况下,中心格式的数值耗散仍然主导了能量的耗散,再添加亚格子模型,计算结果反而变得稍差.对于工程中的低阶格式而言,采用中心格式计算大涡模拟是比较好的选择,而且在计算不存在稳定性问题时,采用不添加亚格子模型的隐式大涡模拟效果更好.  相似文献   

20.
Adaptive mesh refinement (AMR) in conjunction with high order upwind finite difference methods has been used effectively on a variety of problems. In this paper we discuss an implementation of an AMR finite difference method that solves the equations of gas dynamics with two material species in three dimensions. An equation for the evolution of volume fractions augments the gas dynamics system. The material interface is preserved and tracked from the volume fractions using a piecewise linear reconstruction technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号