首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以奥美拉唑、 苯妥英、 卡马西平和非那西丁为检测肝药酶细胞色素P450酶(CYP450)亚型的专属探针药物, 通过原型药物减少量测定法考察药物体外代谢的变化, 评价人参皂苷Rb1对CYP450不同亚型酶的作用. 结果表明, P2C9, P2C19和P3A4实验组与对照组差异不显著, P1A2实验组与对照组差异显著, 表明人参皂苷Rb1能诱导P1A2亚型酶的活性, 促进底物与酶反应, 加快底物的代谢, 而对P2C9, P2C19和P3A4三个亚型酶有弱的诱导或无诱导作用. 根据快速分离液相色谱-质谱联用(RRLC-MS/MS)检测结果推断, 人参皂苷Rb1在CYP450酶中的代谢产物可转化为人参皂苷Rb1氧化产物(Rb1+O)及人参皂苷Rd和F2.  相似文献   

2.
为了低成本有效制备人参稀有皂苷C-K或F2, 将A. niger g.848菌酶用于转化含有人参皂苷(质量分数)分别为49.6% Rb1, 25.9% Rd, 19.3% Rc和5.23% Rb2的西洋参二醇混合皂苷. 霉菌发酵时, 采用人参二醇皂苷诱导物比人参提取液诱导物的产酶总活力提高10%~15%. 所产的2种诱导酶均能水解人参二醇皂苷的3-O-和20-O-多种糖基, 均为人参皂苷酶Ⅰ型; 但是人参二醇皂苷诱导物所产酶几乎全部转化人参二醇皂苷为C-K, 而人参提取液诱导物所产酶则残留中间产物. 使用黑曲霉人参二醇皂苷诱导所产酶, 在转化西洋参二醇皂苷的动态研究中发现, 酶反应1.5~2.5 h, 主要为产物F2; 酶反应12 h后, 主要产物为C-K皂苷. 基于此, 40 g人参二醇类皂苷在45 ℃粗酶反应24 h, 经处理得到含C-K质量分数为87%的23 g酶反应产物, C-K转化率达85%(摩尔分数). 用40 g西洋参二醇皂苷在45 ℃粗酶反应2.5 h, 经处理得到含有质量分数为58%的F2和27%的C-K的26 g酶反应产物, F2转化率为50.4%, C-K转化率为29.5%. 通过人参二醇皂苷诱导的黑曲霉粗酶转化人参二醇类皂苷动态研究, 建立了C-K转化率为85%, F2转化率为50%的制备方法, 为大批量制备提供了基础依据.  相似文献   

3.
口蹄疫病毒3ABC基因截短体在毕赤酵母中的表达及鉴定   总被引:1,自引:0,他引:1  
将长为525 bp的口蹄疫病毒3ABC基因截短体克隆到毕赤酵母表达载体pPIC9K中, 构建了重组表达质粒pPIC9K-3ABCt. 用BglⅡ线性化后, 电转化毕赤酵母菌GS115, 经表型筛选, PCR鉴定, 获得阳性重组菌(GS115/pPIC9K-3ABCt). 然后进行诱导表达, 通过SDS-PAGE和Western blot鉴定表达产物. 结果表明, 重组菌株成功分泌表达了分子量为40000, 具有免疫反应活性, 且呈二聚体形式的目的蛋白. 在96 h时表达量达到最高峰, 占分泌总蛋白的18%, 达到23.4 mg/L. 为进一步研制口蹄疫免疫和感染动物鉴别诊断试剂奠定了基础.  相似文献   

4.
利用高效液相色谱(HPLC)法, 对重组嗜热β-葡萄糖苷酶(Fpglu1)转化稀有人参皂苷(Rd和CK)进行研究, 并表征了其催化动力学参数. 利用同源模建和分子动力学模拟等生物信息学技术, 探究了Fpglu1转化人参皂苷的结构基础及其相互作用. 结果表明, Fpglu1能够水解人参总皂苷生成稀有皂苷Rd和CK, 其催化人参皂苷Rb1, Rb2和Rc的Km值分别为0.318, 1.840和5.269 mmol/L; 酶的转换数(kcat)值分别为144.191, 0.572和0.011 s-1. 当转化时间分别为6和102 h时, Rd和CK的产率达到最大, 分别为60%和93%. 通过对该酶的结构预测及皂苷分子的对接研究发现, 底物位于由疏水性氨基酸构成的底物口袋中, 氨基酸残基Glu194和Glu367是参与催化作用的关键, 且实验测得的酶促反应动力学参数(Km)与对接的相互作用能量值存在线性关系.  相似文献   

5.
利用高效液相色谱(HPLC)法,对重组嗜热β-葡萄糖苷酶(Fpglu1)转化稀有人参皂苷(Rd和CK)进行研究,并表征了其催化动力学参数.利用同源模建和分子动力学模拟等生物信息学技术,探究了Fpglu1转化人参皂苷的结构基础及其相互作用.结果表明,Fpglu1能够水解人参总皂苷生成稀有皂苷Rd和CK,其催化人参皂苷Rb_1,Rb_2和Rc的K_m值分别为0.318,1.840和5.269 mmol/L;酶的转换数(k_(cat))值分别为144.191,0.572和0.011 s~(-1).当转化时间分别为6和102 h时,Rd和CK的产率达到最大,分别为60%和93%.通过对该酶的结构预测及皂苷分子的对接研究发现,底物位于由疏水性氨基酸构成的底物口袋中,氨基酸残基Glu194和Glu367是参与催化作用的关键,且实验测得的酶促反应动力学参数(K_m)与对接的相互作用能量值存在线性关系.  相似文献   

6.
利用PCR以实验室构建的原核重组表达质粒pProEX-OCIF为模板扩增得到N末端融合有6×His标签和rTEV蛋白酶识别序列的人破骨细胞形成抑制因子(OsteoclastogenesisInhibitoryFactor,简称OCIF)结构域D1~D6(简称O CIFm)编码基因片段;将其与pMD18-T连接,转化大肠杆菌TOP10,筛选得到阳性重组质粒pMD18-OCIFm,双酶切重组克隆质粒pMD18-OCIFm得到OCIFm基因片段;将其定向插入甲醇营养型酵母分泌表达载体pPIC9中,构建获得重组表达质粒pPIC9-OCIFm.测序验证后,以限制性内切酶SalⅠ线化,电穿孔转化酵母宿主菌GS115.筛选得到阳性表达菌株后,甲醇诱导表达4d,SDS-PAGE和Westernblot对表达情况进行分析和确认.所获得的OCIFm基因片段在甲醇营养型酵母中表达量占菌体总蛋白的30%以上.利用Ni-NTA树脂对表达产物进行一步亲和层析纯化.活性测定表明纯化的表达产物可诱导体外培养的成熟破骨细胞样细胞的凋亡.表达产物的生物学活性较利用原核表达系统明显提高.  相似文献   

7.
Aspergillus niger NG1306菌株中扩增得到β-木糖苷酶基因anxyl, 与pPICZαA连接构建了表达载体pPICZαA-anxyl, 进一步在毕赤酵母KM71H中诱导表达获得了目的酶蛋白重组β-木糖苷酶(Anxyl); 并将其用于人参皂苷Rb3及C-Mx的生物转化及催化动力学参数表征. 研究结果表明, Anxyl可将人参皂苷Rb3和C-Mx分别转化为人参皂苷Rd和C-K. 酶学性质研究表明, 该酶最适反应pH=2.5, 最适反应温度为35 ℃; 在pH=2.0~5.0, 20和30 ℃条件下其具有较好的稳定性, Mg2+对酶活具有促进作用. Anxyl对葡萄糖和乙醇有较好的耐受性, 其催化对硝基苯基-β-D-吡喃木糖苷(pNPX)、 人参皂苷Rb3和C-Mx水解的米氏常数(Km)值分别为3.1, 1.55和1.04 mmol/L, 酶的最大反应速率(Vmax)分别为1.9×102, 0.8×103和8×103 mmol/min, 酶的转换数(Kcat)值分别为5.55, 0.17和1.85 s-1, 表明该酶对天然底物Rb3和C-Mx具有更高的亲和力.  相似文献   

8.
微生物酶催化制备人参皂苷20(S)-Rg2,20(S)-Rh1和20(S)-PPT   总被引:2,自引:0,他引:2  
摘要 人参次级皂苷具有较强的抗癌、抗癌转移等药理活性,但由于在人参中含量少或不存在,因此以人参中含量较高的主要人参皂苷制备药效更高的人参次级皂苷不仅有必要,而且很有意义.本文以微生物Microbacterium esteraromaticum GS514的培养液中分离的粗酶为催化剂水解人参皂苷Re和Rg1,并通过1H NMR和13C NMR谱进行了水解产物的结构表征.实验结果表明,反应体系中无机盐NaCl的存在与否直接影响人参皂苷Re,Rg1与粗酶液的反应结果.人参皂苷与粗酶液直接反应,人参皂苷Re不发生反应,人参皂苷Rg1通过C6所连β-D-吡喃葡萄糖的选择性水解转化成人参皂苷F1.如果该反应是在无机盐NaCl存在下进行,人参皂苷Re通过对C20 所连β-D-吡喃葡萄糖的选择性水解定向转化为20(S)-人参皂苷Rg2;人参皂苷Rg1定向转化成20(S)-人参皂苷Rh1以及20(S)-原人参三醇(PPT).这说明NaCl的加入激活了C20β-D-吡喃葡萄糖苷酶的活性,这对定向合成不同次级人参皂苷具有重要意义.  相似文献   

9.
克隆了来自于枯草芽孢杆菌的羰基还原酶基因IolS和葡萄糖脱氢酶基因GDH,采用Ni-NTA镍亲和层析柱对重组蛋白IolS进行纯化,并对纯酶进行了酶学性质研究.结果表明,该羰基还原酶的最适温度和pH值分别为30oC和6.0;在40oC以下具有较好的热稳定性;在pH5.57.0的偏酸性范围内能保持75%以上的酶活.采用三种策略构建了IolS和GDH的共表达重组质粒,结果发现,采用双启动子的重组质粒能够实现羰基还原酶IolS的高效表达,粗酶液中的IolS和GDH的比酶活均达到1.5U/mg.运用该重组菌对10g/L的OPBE进行不对称还原,反应15h后,底物转化率大于99%,产物(R)-2-羟基-4-苯基丁酸乙酯的ee值达到99.5%.  相似文献   

10.
以酵母分泌型表达载体pPIC9k为基础, 通过一段柔性连接肽Linker构建含有人源化抗HIV-1 gp41单链抗体(ScFv41)和免疫诱导因子葡萄球菌肠毒素A(staphylococcal enterotoxin A, SEA)的融合表达质粒pPIC9k-SL41, 线性化后, 采用电转化法整合入巴斯德菌毕赤酵母GS115中, 经His+MutS表型鉴定、PCR分析以及G418筛选获得高拷贝重组转化子. 摇瓶培养、甲醇诱导表达、SDS-PAGE和Western Blot分析结果表明, 目的蛋白得到良好表达, 表达量最高可达到47.9 mg/L. 目的蛋白经初步纯化后, 用于制备的HIV-1感染靶细胞复制模型进行抗体亲和力测定、细胞结合活性测定和细胞杀伤活性研究, 结果显示, 目的蛋白能够很好地与靶细胞模型中的HIV-1外膜蛋白gp160发生结合反应, 并可介导特异的CTL反应, 对靶细胞具有明显的杀伤活性, 表明获得了具有生物活性的抗HIV-1重组导向制剂.  相似文献   

11.
将多壁碳纳米管(MWCNTs)作为选择性吸附材料,用于快速分离人参提取物中的人参皂苷.人参经甲醇溶液超声提取后,提取物中主要为人参皂苷和糖类.人参中的糖类与人参皂苷的极性相近,是提取分离人参皂苷时的主要干扰物. MWCNTs可以快速吸附和脱附人参皂苷,但是对糖类无吸附作用.利用其选择性吸附性能,建立了MWCNTs快速分离人参提取物中人参皂苷和糖类的方法.在优化的分离条件下,MWCNTs对人参提取物中糖类的分离度高于90%,对8种主要人参皂苷[Rb1,Rb2,Rc,Rd,Re,Rg1,20(S)-Rf和Ro]的吸附容量为15. 0~24. 0μg/mg,回收率高于90%.进一步研究表明,人参皂苷在3 min内即可达到吸附和脱附平衡,并且人参皂苷的回收率受脱附溶剂极性的影响.相比于常规材料大孔树脂,MWCNTs可以更快速、简便地分离人参皂苷.  相似文献   

12.
以不同浓度镧处理人参发根, qRT-PCR检测人参皂苷合成关键酶基因PgSS,PgDDS和PgβAS的表达水平, HPLC测定人参皂苷含量,探讨镧对人参发根生长及其人参皂苷合成影响的作用机制。镧浓度分别为5.0, 10.0和15.0 mg·L~(-1)时,促进发根伸长、根毛形成和重量增加, 20.0, 25.0和30.0 mg·L~(-1)时,抑制发根生长;PgSS和PgDDS基因表达水平对镧呈浓度依赖性变化, 20.0 mg·L~(-1)时,PgSS和PgDDS基因表达量均显著增加(P0.05)且达到最大,高于20.0 mg·L~(-1)时,PgSS和PgDDS基因表达水平随镧浓度升高而降低;镧对PgβAS基因表达无明显影响。镧促进发根中人参皂苷Rb1, Rb2, Rc, Rd, Re, Rg1和总皂苷含量增加,人参皂苷合成积累规律与PgSS和PgDDS基因表达规律一致,当镧浓度为20.0 mg·L~(-1)时,人参皂苷产量亦达到最高。表明镧可以调节人参发根的生长,通过促进人参皂苷合成关键酶基因PgSS和PgDDS的表达增加人参皂苷的生物合成与积累。  相似文献   

13.
人参皂苷Rb1在大鼠体内的药物代谢研究   总被引:6,自引:0,他引:6  
人参皂苷Rb1是人参中的达玛烷型三萜皂苷类化合物, 具有多种生物活性. 对人参皂苷Rb1代谢产物的分析已有报道, 在大鼠尿液、粪便、胃和大肠中共检出了5种代谢产物. 本文采用高效液相色谱-飞行时间串联质谱进行人参皂苷Rb1的体内代谢研究, 通过口服和静脉给予药物, 在大鼠尿液中共检出了人参皂苷Rb1的14种代谢产物, 并系统分析和推断了这些代谢物的转化规律和可能结构.  相似文献   

14.
采用泡沫浮选法对三七提取液中的人参皂苷Rg1、Re、Rb1和Rd进行了分离富集,并用高效液相色谱法分别测定了含量.考察了浮选液浓度、浮选时间、浮选液pH值、氮气流速和电解质NaCl浓度对浮选效率的影响.结果表明:泡沫浮选法对4种皂苷均有较好的分离富集效果,尤其是对人参二醇型皂苷(Rb1,Rd)效果更为明显.当浮选液浓度为2.0 mg/mL,pH值为2~3,氮气流速为20 mL/min,浮选时间10 min,电解质氯化钠浓度0.20 mol/L,泡沫浮选效果最佳.  相似文献   

15.
SARS病毒核衣壳蛋白的表达与鉴定   总被引:1,自引:0,他引:1  
依据Genebank中SARS基因组序列和酵母菌对密码子的选择性,采用人工合成的方法,合成了优化的SARS病毒核衣壳蛋白(N)的全基因(1296bp),与CTL表位基因(195bp)重组后,将其克隆到酵母分泌型表达载体pPIC9K中,构建成重组表达载体pPIC9K-N.重组载体转化毕赤酵母GS115,并经MD平板和MM平板筛选及PCR鉴定,得到阳性重组酵母工程菌GS115-pPIC9K-N.用甲醇诱导其分泌表达目的蛋白并对表达产物进行分析、浓缩与鉴定.结果表明,SARS病毒核衣壳蛋白能实现在毕赤酵母中高效表达,表达量达到20%,初步纯化后的产物具有良好的抗原特异性.  相似文献   

16.
采用密闭微波技术对7种常见人参皂苷单体(Rb1,Rb2,Rb3,Rc,Rd,Re和Rg1)进行降解,通过高效液相色谱(HPLC)分析并与相同条件下非微波降解物对比,研究了密闭微波降解人参皂苷的产物在化学结构及组成上的变化规律,以期快速、高效地制备生物活性高的稀有人参皂苷.结果表明,密闭式微波降解法能够使常见人参皂苷基本降解完全,而相同条件下非微波降解法则基本不发生降解.原人参二醇型人参皂苷易水解掉C20位糖,并发生C20位构型变化,生成20(R)-Rg3和20(S)-Rg3,其中20-(R)为优势构型,C20位羟基进一步脱水产生稀有人参皂苷Rk1和Rg5.同时,20(S/R)-Rg3失去C3位的1分子葡萄糖转化为20(S/R)-Rh2,C20位羟基再进一步脱水生成了Rk2和Rh3.此外,人参皂苷C20位所连的糖种类与构型影响了降解产物中各稀有皂苷的组成与比例,但7种原人参二醇型人参皂苷密闭式微波降解产物中Rg5含量均为最高.密闭式微波降解对原三醇型人参皂苷的转化作用与原二醇型人参皂苷具有相似的规律,人参皂苷Re和Rg1的密闭式微波降解产物中Rh4含量均为最高.本文结果进一步说明在相同的降解条件下,密闭式微波降解法的降解效率远高于高温高压非微波降解法,密闭式微波降解可明显促进常见人参皂苷向稀有人参皂苷转化,因此采用密闭微波技术对常见人参皂苷进行降解可以大量获得稀有人参皂苷.  相似文献   

17.
利用液相色谱-质谱联用技术分析了Keggin型12-磷钨酸化学转化人参皂苷Rb1产物的结构与转化途径.基于高效液相色谱对转化产物的快速分离,利用Q Exactive高分辨质谱的Full MS-AIF模式快速鉴定了产物结构,并利用多级串联质谱进行结构验证.进一步结合人参皂苷异构体在反向C18色谱柱上的相对保留时间,快速分析鉴定出Rb1的10种转化产物为20(S)-Rg3,20(R)-Rg3,20(S)-25-OH-Rg3,20(R)-25-OH-Rg3,25-OH-Rk1,25-OH-Rg5,Rg5,Rk1,(20S,25)-环氧-Rg3和(20R,25)-环氧-Rg3.根据转化产物的结构初步推断了人参皂苷的转化途径:在12-磷钨酸产生的酸性环境中,Rb1主要通过C20位去糖基化、差向异构化和烯烃链的水合、消除及环合反应转化为稀有皂苷.采用三重四极杆质谱的选择反应监测模式准确定量分析了Rb1的转化效率和稀有皂苷20(S)-Rg3,20(R)-Rg3,Rk1和Rg5的产率.定量分析结果显示,与生物转化相比,12-磷钨酸对Rb1有更高的转化效率,反应40 min后转化率达到100%.本文结果表明,HPLC-HRMS/MSn/Qq Q技术是人参皂苷等天然产物结构解析与定量分析的有效方法.  相似文献   

18.
克隆Streptomyces maritimus来源的苯丙氨酸变位酶(Sm PAM)基因,并进行异源表达,制备了重组Sm PAM,用于一步合成高附加值的β-芳香丙氨酸.提取S.maritimus的基因组,设计1对特异性引物,采用PCR扩增编码Sm PAM的结构基因pam,与表达载体p ET28a连接,构建重组表达质粒p ET28a-pam,转入E.coli BL21中表达,采用亲和层析柱分离纯化重组酶Sm PAM.结果表明,克隆得到编码523个氨基酸长度的Sm PAM基因pam,并在大肠杆菌中实现了高效表达,制得电泳纯的重组Sm PAM.该酶在最适温度30℃,p H=9.0条件下活力达到2.5 U/mg,具有较高的热稳定性和p H稳定性,在60~70℃下保持3 h未见活性下降,在p H=9~11保持24 h,残余酶活力达到98%.Sm PAM具有较宽的底物谱,可催化苯环上携带不同基团的3-芳香丙烯酸合成β-芳香丙氨酸,当苯环上携带吸电子基团时催化反应更易完成,其中2-硝基-β-苯丙氨酸的产率最高,达到93%.  相似文献   

19.
田七花提取物中22种皂苷类成分的液相色谱-质谱测定   总被引:2,自引:2,他引:0  
在甲酸体系中以高效液相色谱负离子模式电喷雾电离质谱以及碰撞诱导裂解技术研究了12种人参皂苷(Re、Rg1、Rg2、Rg3、Rf、Rb1、Rb2、Rb3、Rc、Rd、Rh1 和Rh2).结果表明,应用皂苷化合物(包括人参皂苷、田七皂苷和绞股蓝皂苷)的质谱及裂解规律可在缺少相应对照品的情况下对其进行可靠的鉴定.在此基础上,对田七花样品以加压溶剂萃取法提取,然后以LC-MS/MS分析,从中鉴定出22种皂苷,其中六糖皂苷Ⅰ和Ⅱ、乙酰基Rb1为首次报道,并且定量测定了其中10种皂苷的含量.  相似文献   

20.
采用液相色谱-串联质谱法快速、灵敏地测定大鼠血浆中人参皂苷Rb1(GRb1)的含量,并将该方法应用于大鼠口服GRb1后的代谢动力学研究。血浆样品采用96孔板进行液-液萃取后,应用Agilent SB-C18色谱柱(100 mm×2.1 mm,3.5μm)进行分离,以甲醇-0.1%甲酸溶液(体积比为75∶25)为流动相进行洗脱,在正离子模式下对GRb1和内标人参皂苷Rg1(GRg1)进行检测,用于定量的离子反应分别为1131.5→365.1(GRb1),823.3→643.4(GRg1)。人参皂苷Rb1血浆样品测定方法的定量线性范围为1~500 ng/mL,线性相关系数大于0.999,定量下限为1 ng/mL,批内和批间精密度(RSD)小于9.05%,回收率为79.7%~81.0%,基质效应为96.6%~99.3%。大鼠灌胃给予Rb15 mg/kg后,大鼠体内血药浓度到达高峰时间tmax为1.53 h,半衰期t1/2为13.54 h,药时曲线面积AUC0~72为16237.76(ng·h)/mL。该方法快速、高效、灵敏,适用于人参皂苷Rb1的代谢动力学研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号