首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the characterization of hexagonally ordered, vertically aligned silicon nanowires (SiNW) by means of analytical transmission electron microscopy. Combining colloidal lithography, plasma etching, and catalytic wet etching arrays of SiNW of a sub-50 nm diameter with an aspect ratio of up to 10 could be fabricated. Scanning transmission electron microscopy has been applied in order to investigate the morphology, the internal structure, and the composition of the catalytically etched SiNW. The analysis yielded a single-crystalline porous structure composed of crystalline silicon, amorphous silicon, and SiO x with x≤2.  相似文献   

2.
M. C. Cheynet  T. Epicier 《哲学杂志》2013,93(17):1753-1771
This work reports an experimental electron-energy-loss spectroscopy study carried out on a model thermal Si–SiO2 interface. Valence-loss spectra and core-loss spectra (Si L2,3 and O K edges) were recorded across the interface in line-spectrum mode with a high spatial resolution in a field emission gun scanning transmission electron microscope. From the analysis of the line spectra and on the basis of high-resolution electron microscopy and high-angle annular dark-field experiments, it is concluded that the interface is not sharp but extends over about three atomic planes consisting of Si and O atoms arranged in a structure evolving between crystalline SiO and SiO2 before growing as an amorphous SiO2 layer. In addition, from the analysis of the valence-loss spectra in terms of energy-loss function or dielectric function ε, we show that valence-electron-energy-loss spectroscopy could be a relevant alternative method for determining the electron properties, for example the bandgap, and the dielectric constant of dielectric gates on a nanometre scale.  相似文献   

3.
We demonstrate the application of a new method of analytical transmission electron microscopy for measuring very accurately small amounts of solute atoms within a well-defined planar defect such as a stacking fault, grain boundary or an interface. The method is based on acquiring several spectra with different electron beam diameters from the same position centred on the defect. It can be applied to energy-dispersive X-ray microanalysis (EDXS) or electron energy-loss spectroscopy (EELS) and does not necessitate a scanning unit. The accuracy has been tested numerically under different conditions using simulations for a specific geometry and has been found to be substantially better than that of any other current standard technique. Our calculations suggest an extremely high accuracy theoretically achievable in the determination of e.g. the Gibbsian solute excess or the doping level of a grain boundary down to about ±1% of an effective monolayer, i.e. ±0.1 atoms/nm2 under typical experimental conditions. The method has been applied to zinc oxide, which forms inversion domain boundaries (IDBs) when doped with different transition metal oxides such as SnO2 or Sb2O3. We obtained an experimental precision of ±0.4 atoms/nm2, which has allowed us to solve the atomic structure of the IDBs.  相似文献   

4.
SnO2/In2O3 one-dimensional nano-core-shell structures have been synthesized at 1350 °C by thermal evaporation of the mixture of metal Sn, Fe(NO3)3 powders and In particles. The as-synthesized products have been characterized by energy-dispersive X-ray spectroscopy, selected-area electron diffraction and high-resolution transmission electron microscopy. Microstructure characterization indicates the orientation relationship between core and shell is , . The formation mechanism of this nano-core-shell structure can be attributed to the cover of In2O3 on the surface of SnO2 nanochains. The photoluminescence properties of the nano-core-shell structures have been measured. The PL spectrum shows some difference with the result from pure SnO2 and In2O3 nanostructure that be deemed to relate to interface defects in SnO2/In2O3 nano-core-shell structure.  相似文献   

5.
Inner shell excitation spectra of tetramethylsilane, (CH3)4Si, have been measured in the silicon 2s, 2p (LI,II,III-shell) and carbon is (K-shell) regions using electron energy-loss spectroscopy at an impact energy of 2.5 keV and a scattering angle of ~1°. The high-resolution valence shell spectrum has also been observed at an impact energy of 3 keV and a zero degree scattering angle. The silicon 2p spectra are compared and contrasted with published photoabsorption spectra of SiF4, SiH4, and other related Si-containing molecules with varying ligands.  相似文献   

6.
The room-temperature interaction of iron atoms with the oxidized Si(100)2×1 surface at a coverage from a submonolayer to four monolayers is studied by core-level photoelectron spectroscopy using synchrotron radiation. Computer simulation of the Si 2p core electron spectra demonstrates that iron atoms penetrate beneath the silicon oxide even at room temperature. This process causes the initial silicon phases at the SiOx/Si interface to disappear; gives rise to a complex ternary phase involving Fe, O, and Si atoms; and favors the formation of a Fe-Si solid solution at the interface.  相似文献   

7.
Titanium nitride thin films were deposited on monocrystalline silicon (mc-Si) substrates by direct current reactive magnetron sputtering. Auger electron spectra (AES) of deposited films at different nitrogen partial pressures, show the typical N KL23L23 and Ti L3M23M23 Auger transition overlapping. Also, changes in the Ti L3M23M45 Auger transition peak are observed. X-ray diffraction and high resolution electron microscopy (HRTEM) of a golden color TiN/mc-Si sample, reveal a preferential polycrystalline columnar growth in the 〈111〉 orientation. This sample was also analyzed by electron energy-loss spectroscopy (EELS). The N/Ti elemental ratio is slightly different to the value determined by AES. Atomic distribution around the N atoms is in agreement with that expected from the N atom in the fcc unit cell of TiN. This distribution was obtained via an extended energy-loss fine structure (EXELFS) analysis from EELS spectra.  相似文献   

8.
Ti/Ge2Sb2Te5/Ti thin films deposited by a sputtering method on SiO2/Si substrates were annealed at 400 °C in N2 atmosphere and characterized by using transmission electron microscopy (TEM) and Auger electron spectroscopy (AES) in order to investigate the inter-diffusion of the Ti/Ge2Sb2Te5/Ti system due to annealing. The TEM and AES results showed that the interface between the Ti and the Ge2Sb2Te5 layers was unstable and Ti atoms were incorporated into the Ge2Sb2Te5 thin film upon annealing. The Te and Sb atoms of the Ge2Sb2Te5 layer diffused into the Ti layer. The intermixing layers between the Ge2Sb2Te5 layer and two Ti layers were formed. These results indicate that the microstructural properties of the Ti/Ge2Sb2Te5/Ti systems can be degraded by the postgrowth thermal annealing.  相似文献   

9.
《Surface science》1986,167(1):207-230
A unified electron spectroscopic study of polycrystalline Ti and its interaction with H2, O2, N2, and NH3 are described. Auger electron spectroscopy (AES), electron energy-loss spectroscopy (ELS), ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) are combined to provide detailed information about the electronic structure of the titanium surface and its interaction with these adsorbates. X-ray and ultraviolet photoelectron spectra and electron energy-loss spectra are presented for the clean titanium surface, and following exposure to H2, O2, N2 and NH3. Spectral assignments are provided in each case. The electron spectra of oxygen exposed Ti and nitrogen sputtered Ti are quite similar, and are interpreted with reference to band structure calculations for TiO and TiN. Electron spectroscopy indicates essentially complete dissociative adsorption of NH3 on the clean titanium surface.  相似文献   

10.
The microstructure and electronic structure of silicon-rich oxide (SRO) films were investigated using transmission electron microscopy and electron energy loss spectroscopy as the main analytical techniques. The as-deposited SRO film was found to be a single phase SiO1.0, as suggested by its electronic structure characteristics determined by the valence electron energy loss spectrum. This single phase undergoes a continuous but incomplete phase decomposition to Si and SiO2 for films annealed between 300 and 1100°C. The resulting Si phase first appears as ~2?nm-diameter amorphous clusters which grow to larger sizes at higher annealing temperatures, but only crystallize at a critical temperature between 800 and 900°C. This cluster/matrix configuration of the SRO films is consistent with the appearance of the interface plasmon and its oscillator strength as a function of the nanoparticle size. Three separate stages were identified in the sequence of annealed films that were characterized by the presence of single-phase SiO, amorphous silicon nanoclusters, and silicon nanocrystals, respectively. The presence of amorphous silicon nanoclusters in the intermediate stage, the mean size of which can be controlled via annealing, may offer an alternative to silicon nanocrystal composites for optical applications.  相似文献   

11.
The crystal and electronic structure of solidC 76 has been studied using transmission electron microscopy and electron energy-loss spectroscopy in transmission. C76 forms a close packed structure with an average facecentred cubic symmetry. From valence band and core electron excitations information on the dielectric function and the unoccupied density of states has been obtained.  相似文献   

12.
Nanoscale laser processing and diagnostics   总被引:2,自引:0,他引:2  
The article summarizes research activities of the Laser Thermal Laboratory on pulsed nanosecond and femtosecond laser-based processing of materials and diagnostics at the nanoscale using optical-near-field processing. Both apertureless and apertured near-field probes can deliver highly confined irradiation at sufficiently high intensities to impart morphological and structural changes in materials at the nanometric level. Processing examples include nanoscale selective subtractive (ablation), additive (chemical vapor deposition), crystallization, and electric, magnetic activation. In the context of nanoscale diagnostics, optical-near-field-ablation-induced plasma emission was utilized for chemical species analysis by laser-induced breakdown spectroscopy. Furthermore, optical-near-field irradiation greatly improved sensitivity and reliability of electrical conductance atomic force microscopy enabling characterization of electron tunneling through the oxide shell on silicon nanowires. Efficient in-situ monitoring greatly benefits optical-near-field processing. Due to close proximity of the probe tip with respect to the sample under processing, frequent degradation of the probe end occurs leading to unstable processing conditions. Optical-fiber-based probes have been coupled to a dual-beam (scanning electron microscopy and focused ion beam) system in order to achieve in-situ monitoring and probe repair.  相似文献   

13.
Energy losses below 100 eV are by far less exploited than higher losses in electron energy-loss spectroscopy. Two new examples are given to illustrate the characterization possibilities offered by spectra in this energy range. Typical materials that could be used as electrodes in electrochemical cells were chosen as application cases. Through the use of calculations based on density functional theory, we first demonstrate that the first peak present at the lithium K edge in Li x TiP4 can give access to the precise localisation of inserted Li atoms in the f.c.c. structure. In particular, different tetrahedral sites could be differentiated according to their distance to the Ti site. Secondly, calculations of valence electron energy-loss spectra of perovskite materials indicate that a characteristic peak for regular perovskite (Pm m space group) exists in the 10–15 eV range. The high sensitivity of this peak to the distortion of the octahedron arrangements is also demonstrated. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

14.
Growth of Cu films on (0001)Al2O3 substrates can result in metallic Cu—Al or ionic-covalent Cu—O bonds at atomically abrupt interfaces. The type of bonding depends on the substrate cleaning procedure prior to film growth. Cu films deposited on Ar+-ion sputter-cleaned substrates exhibit interfacial Cu-L2,3, Al-L2,3 and O-K energy-loss near-edge structures that indicate the formation of metallic Cu—Al bonds at the Cu/Al2O3 interface. In contrast, growth on chemically cleaned -Al2O3 substrates results in interfacial energy-loss near-edge structures that suggest Cu—O bonding at the interface. The experimental electron energy-loss spectroscopic results are compared to calculated spectra, and the mechanisms causing the changes in the atomic and electronic structure are addressed.  相似文献   

15.
Low energy electron loss spectroscopy (ELS) and Auger electron spectroscopy (AES) have been applied for the studies of the interaction of H2S molecules with Si(111)7 × 7 surfaces. The observations are consistent with the interpretation that the room temperature non-dissociative adsorption state of H2S molecules changes substantially after annealing at 550°C, resulting in the desorption of hydrogen and the covalent bond formation between silicon and sulfur atoms. The silicon disulfide films formed on Si(111) surfaces have been identified by the characteristic loss peaks in comparison with those of silicon dioxide.  相似文献   

16.
Polycrystalline samples of Pr1−x Sr x Fe0.8Co0.2 O3−δ (x=0.1, 0.2, 0.3) (PSFC) were prepared by the combustion synthesis route at 1200°C. The structure of the polycrystalline powders was analysed with X-ray powder diffraction data. The X-ray diffraction (XRD) patterns were indexed as the orthoferrite similar to that of PrFeO3 having a single-phase orthorhombic perovskite structure (Pbnm). Pr1−x Sr x Fe0.8Co0.2O3−δ (x=0.1, 0.2, 0.3) films have been deposited on yttria-stabilized zirconia (YSZ) single-crystal substrates at 700°C by pulsed laser deposition (PLD) for application to thin film solid oxide fuel cell cathodes. The structure of the films was analysed by XRD, scanning electron microscopy (SEM) and atomic force microscopy (AFM). All films are polycrystalline with a marked texture and present pyramidal grains in the surface with different size distributions. Electrochemical impedance spectroscopy (EIS) measurements of PSFC/YSZ single crystal/PSFC test cells were conducted. The Pr0.7Sr0.3Fe0.8Co0.2O3−δ film at 850°C presents a lower area specific resistance (ASR) value, 1.65 Ω cm2, followed by the Pr0.8Sr0.2Fe0.8Co0.2O3−δ (2.29 Ω cm2 at 850°C) and the Pr0.9Sr0.1Fe0.8Co0.2O3−δ films (5.45 Ω cm2 at 850°C).  相似文献   

17.
We explore the hydrogen-related microstructures involved in hot electron defect creation at the Si(100)–SiO2interface of metal-oxide-semiconductor field effect transistors. Based on the energetics of hydrogen desorption from the interface between silicon and silicon-dioxide, we argue that the hard threshold for hydrogen-related degradation may be considerably lower than the previously assumed value of 3.6 eV. Also, hydrogen atoms released from Si–H bonds at the interface by hot electron stress are trapped in bulk silicon near the interface.  相似文献   

18.
The surface roughness of the semiconductor substrate substantially influences properties of the whole semiconductor/oxide structure. SiO2/Si structures were prepared by using low temperature nitric acid oxidation of silicon (NAOS) method and then the whole structure was passivated by the cyanidization procedure. The influence of the surface morphology of the silicon substrate onto the electrical properties of ultrathin NAOS SiO2 layer was investigated. Surface height function properties were studied by the AFM method and electrical properties were studied by the STM method. The complexity of analyzed surface structure was sensitive to the oxidation and passivation steps. For describing changes in the oxide layer structure, several fractal measures in an analysis of the STM images were used. This fractal geometry approach enables quantifying the fine spatial changes in the tunneling current spectra.  相似文献   

19.
Large-scale amorphous silica nanostructures, including nanowires, nanotubes and flowerlike nanowire bunches depending on the position, have been fabricated on silicon wafer through a cheap route under the assistance of gold and germanium. Accompanying the observation of blue-green light emission, comprehensive micro-structural characterization reveals that the growth of nanostructures is catalyzed only by gold whereas the final morphology of nanostructures depends on the location to germanium ball. Au2Si, a compound of gold and silicon, is also disclosed as an intermediate state during the catalysis. Correspondingly, a growth scheme is proposed based on the experimental results and the vapor-liquid-solid mechanism.  相似文献   

20.
Bulk La2/3Sr1/3MnO3 ceramic samples prepared by thermal decomposition are investigated using transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). An abnormal phenomenon, where three kinds of La2/3Sr1/3MnO3 phases with different structures and the same composition coexist in the same grain, has been observed. Besides the stable rhombohedral majority phase, the two other phases are a simple cubic structure with a=0.389 nm and a new hexagonal structure with a=0.544 nm, c=0.668 nm. The simple cubic phase is a residual phase of high-temperature due to the size effect and bondage of twin boundary. Image simulations have suggested that the new hexagonal phase is the La-Sr ordered structure with space group , which is converted from the disordered simple cubic phase. The formation mechanism of the ordered phase is explained from volume energy and interface energy considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号