首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the effect of different buffer layers on the Pb(Zr0.52Ti0.48)O3 (PZT) thin films, 10-nm thick (Pb0.72La0.28)Ti0.93O3 (PLT) and Pb(Zr0.52Ti0.48)O3 buffer layers have been deposited on the Pt(1 1 1)/Ti/SiO2/Si substrates by pulsed laser deposition, respectively. The top buffer layers were also deposited on PZT thin films with the same thickness of the seed layers in order to enhance the fatigue characteristics of PZT thin films. We compared the results of dielectric constant, hysteresis loops and fatigue resistance characteristics. It was found that the dielectric properties of PZT thin films with PLT buffer layers were improved by comparing with PZT thin films with PZT buffer layers. The polarization characteristics of PZT thin films with PLT buffer layers were observed to be superior to those of PZT thin films using PZT buffer layers. The remanent polarization of PZT thin films showed 36.3 μC/cm2 and 2.6 μC/cm2 each in the case of use PLT and PZT buffer layers. For the switching polarization endurance analysis, PZT thin films with PLT buffer layers showed more excellent result than that of PZT thin films with PZT buffer layers.  相似文献   

2.
Pb(Zr0.4Ti0.6)O3 [PZT(40/60)] films were deposited onto LaNiO3 (LNO) coated Si substrates by metal-organic decomposition (MOD) technique. Excess Pb was incorporated in the film by using excess Pb (2%–15%) in the solution. The crystallinity and ferroelectric properties of PZT films were investigated by using X-ray diffraction (XRD), RT66A test system and HP4194 impedance analyzer, respectively. Rayleigh law was employed to analyze the defect concentration in the films. The results show that all the PZT films show the (1 0 0) preferential orientation with complete perovskite structure except for the 2% film displaying some pyrochlore phase. The (1 0 0) preferential orientation is mainly attributed to LNO bottom electrode, which has the highly (1 0 0) preferential orientation. The 10% film shows the best polarization and dielectric properties. The remnant polarization and coercive field are about 10.1 μC/cm2 and 73 kV/cm under an electric field around 330 kV/cm, respectively. And the dielectric constant and dissipation factor are about 656 and 0.022 at a frequency of 1 kHz, respectively. The good ferroelectric properties of the 10% film are mainly attributed to the low defect concentration in the film.  相似文献   

3.
Lead zirconate titanate (PZT) films were fabricated on Pt(111)/Ti/SiO2/Si(100) using the triol sol--gel method. The effect of the pre-heating temperature on the phase transformations, microstructures, electrical properties and ferroelectric properties of the PZT thin films was investigated. Randomly-oriented PZT thin films pre-heated at 400°C for 10?min and annealed at 600°C for 30?min showed well-defined ferroelectric hysteresis loops with a remanent polarization of 26.57?µC?cm?2 and a coercive field of 115.42?kV?cm?1. The dielectric constant and dielectric loss of the PZT films were 621 and 0.0395, respectively. The microstructures of the thin films are dense, crack-free and homogeneous with fine grains about 15–20?nm in size.  相似文献   

4.
The preparation process, crystallinity and electrical properties of pulse laser deposited Pb(ZrxTi1−x)O3 (PZT) thin films were investigated in this paper. PZT (x = 0.93) thin film samples deposited at different substrate temperatures were prepared. Si (1 1 0) was the substrate; Ag and YBCO were the top electrode and the bottom electrode respectively. The bottom electrode YBCO was deposited on the Si substrate by pulsed laser deposition (PLD), and then PZT was epitaxially deposited on YBCO also by PLD. After annealing, the top electrode Ag was prepared on PZT by thermal evaporation, and then the Ag/PZT/YBCO/Si structured thin films were obtained. The XRD and the analysis of their electrical characters showed that, when the substrate temperature was elevated from 600 °C to 800 °C, the crystallinity and electrical properties of PZT thin films became better and better, and the FR(LT)FR(HT) phase transition of PZT (x = 0.93) thin films occurred at 62 °C. The PZT film deposited at 800 °C had the best pyroelectric properties, and when the FR(LT)FR(HT) phase transition of this film occurred, the peak value of pyroelectric coefficient (p) was obtained, with a value of 1.96 × 10−6 C/(cm2 K). The PZT film deposited at 800 °C had the highest remnant polarization (Pr) and the lowest coercive field (Ec), with the values of 34.3 μC/cm2 and 41.7 kV/cm respectively.  相似文献   

5.
Multiferroic thin films with the general formula TiO2/BiFe1−xMnxO3 (x=0.00, 0.05, 0.10 and 0.15) (TiO2/BFMO) were synthesized on Au/Ti/SiO2/Si substrates using a chemical solution deposition (CSD) method assisted with magnetron sputtering. X-ray diffraction analysis shows the thin films contained perovskite structures with random orientations. Compared with BFMO films, the leakage current density of the TiO2/BFMO thin films was found to be lower by nearly two orders of magnitude, and the remnant polarizations were increased by nearly ten times. The enhanced ferroelectric properties may be attributed to the lower leakage current caused by the introduction of the TiO2 layer. The J-E characteristics indicated that the main conduction mechanism for the TiO2/BFMO thin film was trap-free Ohmic conduction over a wide range of electric fields (0-500 kV/cm). In addition, ferromagnetism was observed in the Mn doped BFO thin films at room temperature. The origin of ferromagnetism is related to the competition between distortion of structure and decrease of grain size and decreasing net magnetic moment in films due to Mn doping.  相似文献   

6.
Ferroelectric strontium bismuth tantalate (SBT) thin films were deposited by thermal metalorganic chemical vapour deposition (MOCVD) onto a complex layered Pt/IrO2/Ir/Ti(Al)N substrate. A study of ultra-violet (UV)-assisted rapid thermal processing (RTP) annealing strategies of the SBT thin films was performed. The influence of UV irradiation temperature and annealing atmosphere on the crystallinity of the deposited films was evaluated using both microstructural and electrical analysis techniques. A UV-RTP strategy in an oxygen atmosphere above 400 °C, followed by a furnace treatment at 700 °C, provided an optimum remnant polarization figure of merit.  相似文献   

7.
The [(Pb0.90La0.10)Ti0.975O3/PbTiO3]n (PLT/PT)n (n = 1-6) multilayer thin films were deposited on the PbOx(1 0 0)/Pt/Ti/SiO2/Si substrates by RF magnetron sputtering method. The layer thickness of PbTiO3 in one periodicity kept unchanged, and the layer thickness of (Pb0.90La0.10)Ti0.975O3 is varied. The electrical properties of the (PLT/PT)n multilayer thin films were investigated as a function of the periodicity (n) and the orientation. The studied results show that the PbOx buffer layer results in the (PLT/PT)n films’ (1 0 0) orientation, and the (1 0 0)-oriented (PLT/PT)n multilayer thin films with n = 2 exhibit better pyroelectric properties and ferroelectric behavior than those of (PLT/PT)n films with other periodicities and orientations. The underlying physical mechanism for the enhanced electrical properties of (PLT/PT)n multilayer thin films was carefully discussed in terms of the periodicities and orientations.  相似文献   

8.
There has been a resurgence of complex oxides of late owing to their ferroelectric and ferromagnetic properties. Although these properties had been recognized decades ago, the renewed interest stems from modern deposition techniques that can produce high quality materials and attractive proposed device concepts. In addition to their use on their own, the interest is building on the use of these materials in a stack also. Ferroelectrics are dielectric materials that have spontaneous polarization in certain temperature range and show nonlinear polarization–electric field dependence called a hysteresis loop. The outstanding properties of the ferroelectrics are due to non-centro-symmetric crystal structure resulting from slight distortion of the cubic perovskite structure. The ferroelectric materials are ferroelastic also in that a change in shape results in a change in the electric polarization (thus electric field) developed in the crystal and vice versa. Therefore they can be used to transform acoustic waves to electrical signal in sonar detectors and convert electric field into motion in actuators and mechanical scanners requiring fine control. In a broader sense the ferroelectric materials can be used for pyroelectric and piezoelectric sensors, voltage tunable capacitors, infrared detectors, surface acoustic wave (SAW) devices, microactuators, and nonvolatile random-access memories (NVRAMs), including the potential production of one transistor memory cells, and applications requiring nonlinear optic components. Another set of potential applications seeks to exploit the ferroelastic properties in stacked templates where they are juxtaposed to ferromagnetic materials. Doing so would allow the control of magnetic properties with electric field, which is novel. Such templates taking advantage two or more properties acquired a new name and now goes by multiferroics. After a brief historical development, this article discusses technological issues such as growth and processing, electrical and optical properties, piezo, pyro, and ferroelectric properties, degradation, measurements methods, and application of mainly lead-zirconate-titanate (PZT = PbZr1?xTixO3). The focus on PZT stems from its large electromechanical constant, large saturation polarization and large dielectric constant.  相似文献   

9.
"在Pt/Ti/SiO2/Si基片上用溶胶-凝胶法生长制备了PZT(Pb(Zr1-xTix)O3)复合梯度铁电薄膜. 薄膜最终结构由6层组成,"向上"梯度薄膜在Pt底电极上的第一层从PbZrO3开始,顶层是PZT(50/50),即第一层是PbZrO3,第二层PZT90/10 (10%Ti),第三层是PZT80/20,第四层PZT70/30,第五层PZT60/40,第六层PZT50/50.每一层与此相反的是"向下"梯度PZT薄膜.用X射线衍射、俄歇电子能谱和阻抗分析来研究梯度薄膜的结构与介电特性.600  相似文献   

10.
Amorphous gallium nitride (a-GaN) thin films were deposited on glass substrate by electron beam evaporation technique at room temperature and high vacuum using N 2 as carrier gas. The structural properties of the films was studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). It was clear from XRD spectra and SEM study that the GaN thin films were amorphous. The absorbance, transmittance and reflectance spectra of these films were measured in the wavelength range of 300–2200 nm. The absorption coefficient spectral analysis in the sharp absorption region revealed a direct band gap of E g = 3:1 eV. The data analysis allowed the determination of the dispersive optical parameters by calculating the refractive index. The oscillator energy E 0 and the dispersion energy E d, which is a measure of the average strength of inter-band optical transition or the oscillator strength, were determined. Electrical conductivity of a-GaN was measured in a different range of temperatures. Then, activation energy of a-GaN thin films was calculated which equalled E a = 0:434 eV.  相似文献   

11.
Graded slanted chiral sculptured silver thin films are produced using oblique angle deposition together with rotation of substrate holder about its surface normal, plus a shadowing block, fixed at the center of the substrate holder. Scanning electron microscope (SEM) and atomic force microscope (AFM) were used for characterization of these films. The results showed a structural gradient with distance from the edge of the shadowing block, which in turn is responsible for the decrease in the volume of void fraction and increase of grain size. Plasmon absorption peaks observed in the optical analysis of these nano-structures showed that their wavelength region and intensity depend on the polarization and the incident angle of light, as well as the distance from the edge of the shadowing block. Photoluminescence (PL) study of the samples showed that there is an inverse size dependence of the PL spectra intensity.  相似文献   

12.
A. Bose 《Applied Surface Science》2010,256(21):6205-6212
PZT thin films of thickness (320-1040) nm were synthesized on Si/SiO2/Ti/Pt multilayered substrates by radio frequency magnetron sputtering. The influence of plasma pressure in the range of (0.24-4.9) Pa, during deposition, on the structural, electrical and ferroelectric properties of the PZT films was systematically studied. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and cross-sectional transmission electron microscopy (XTEM) were employed for structural study. Nano-probe Energy Dispersive (EDX) line scanning was employed to investigate the elemental distribution across the film-bottom electrode interface. I-V characteristics and polarization-electric field (P-E) hysteresis loop of the films were measured. The study reveals that the plasma pressure has a strong influence on the evolution and texture of the ferroelectric perovskite phase and microstructure of the films. At an optimum plasma pressure of 4.1 Pa, PZT films are grown with 93% perovskite phase with (1 1 1) preferred orientation and uniform granular microstructure. These films show a saturation polarization of 67 μC/cm2, remnant polarization of 30 μC/cm2 and coercive field of 28 kV/cm which, according to the literature, seem to be suitable for device applications.Transmission electron microscopy (TEM) study shows that at a plasma pressure of 4.1 Pa, the PZT/bottom Pt interface is sharp and no amorphous interlayer is formed at the interface. At a higher plasma pressure of 4.9 Pa, poor I-V and P-E hysteresis loop are observed which are interpreted as due to an amorphous interlayer at the film-bottom electrode interface which is possibly enriched in Pb, Zr, O and Pt.  相似文献   

13.
In the present study, various Pb[(Ni1/3Sb2/3)xTiyZrz]O3 where x+y+z=1, x=0.08 and y=0.44-0.49, ceramics in the morphotropic phase boundary (MPB) range were studied by dielectric and pyroelectric methods. The results of the investigations revealed an MPB composition range of y≅0.46. The study of the dielectric properties of these compounds as a function of temperature suggests that with increase in y the permittivity maximum increases and transition temperature shifts towards higher temperature. Well-saturated polarization versus electric field (P-E) hysteresis loops were obtained and values of Pr were calculated. The samples revealed good pyroelectric properties for y=0.44 and y=0.45 at room temperature with large figures of merit Fv=0.019 m2/C and FD=1.34×10-5Pa1/2.  相似文献   

14.
Graded chiral zig-zag shaped nano-sculptured silver thin films (GCZSSTF) were produced in two stages using oblique deposition technique together with rotation of substrate about its surface normal while a shadowing block was also fixed at the center of the substrate holder. Chrystallographic and morphological structure of these films were obtained using X-ray diffraction (XRD) and atomic force microscopy (AFM). Spectrophotometry was used to obtain their optical behavior while their application in both hydrophobicity and gas sensing was also investigated. XRD results showed a dominant (1 1 1) orientation growth on the zig arm of the structure while by addition of the second arm (zag) the crystallographical growth orientation changed to (2 2 0).The anisotropic nano-structure of these films was also distinguished through (1 − R) spectra. A common peak at about 350 nm related to the TM mode of plasmon resonances and a broad shoulder at about 420 nm for the s-polarized light and at 620 nm for the p-polarized light corresponding to the LM mode of plasmon resonances are observed. These peaks are directly related to the nano-columns topography. The film system used here proved to act as a physical method for producing layer-by-layer structure for obtaining enhanced hydrophobic surfaces rather than the usual chemical methods reported in the literature. In addition, the GCZSSTF also acted as good as reported results for nano-tubes when applied as cathode in the field ionization gas sensing setup.  相似文献   

15.
Effects of lanthanum (La) substitution (0.003 ≤ x ≤ 0.015) on the dielectric and ferroelectric properties of Pb(Zr0.5Ti0.5)O3 thin films have been investigated. The films were synthesized on the Pt (1 1 1)/Ti/SiO2/Si (1 0 0) substrates by a sol-gel method. Large dielectric constants of the films are obtained within range of 800-1600 which are almost comparable to those observed in bulk ceramics. The films also show improved remnant polarization values and reduced coercive field values with the increasing addition of La substitution. Our results suggest that low La substitution contributes to enhance film electric properties due to the improvement of non-180° domain wall mobility as well as the stabilization of tetragonal phase.  相似文献   

16.
We report synthesis and characterization of the structural, morphologic and ferroelectric behavior of the complex perovskite Ba2TiMoO6. Samples of Ba2TiMoO6 were synthesized through standard solid state reaction methods. Crystalline structure was studied by means of X-ray diffraction experiments and Rietveld-like analysis. Results reveal that material crystallizes in a tetragonal structure, space group P4/mnm (#123), with cell parameters a=3.8557 Å and c=11.8678 Å. The tolerance factor of perovskite was determined to be 1.04. Surface morphology was examined using Scanning Electron Microscopy, which shows the micrometric granular character of samples with 1.0–5.0 μm mean grain size. Ferroelectric response of material was established from curves of polarization as a function of applied electric field. Our results reveal that Ba2TiMoO6 double perovskite evidences a ferroelectric hysteretic behavior at ambient temperature and paramagnetic ordering. © 2011 Elsevier Science. All rights reserved.  相似文献   

17.
曾涛  董显林  毛朝梁  梁瑞虹  杨洪 《物理学报》2006,55(6):3073-3079
采用添加造孔剂的方法制备多孔锆钛酸铅(PZT)陶瓷,并研究了孔隙率和晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理.研究表明:孔隙率的增加降低了多孔PZT陶瓷的介电常数,提高了静水压优值,并证明在一定条件下孔隙率与介电常数关系可由Okazaki经验公式及Banno模型预测;晶粒尺寸增加,多孔PZT陶瓷的介电常数、压电系数和优值增加,并可用Okazaki空间电荷理论解释晶粒尺寸对试样介电和压电性能的影响.对于添加重量百分数为10%造孔剂的多孔PZT陶瓷,当烧结温度为1300℃时,孔隙率为34%,d关键词: 多孔PZT陶瓷 静水压优值 压电性能 介电性能  相似文献   

18.
Nickel oxide thin films were grown onto FTO-coated glass substrates by a two-step process: electrodeposition of nickel sulphide and their thermal oxidation at 425, 475 and 525 °C. The influence of thermal oxidation temperature on structural, optical, morphological and electrochromic properties was studied. The structural properties undoubtedly revealed NiO formation. The electrochromic properties were studied by means of cyclic voltammetry. The films exhibited anodic electrochromism, changing from a transparent state to a coloured state at +0.75 V versus SCE, i.e. by simultaneous ion and electron ejection. The transmittance in the coloured and bleached states was recorded to access electrochromic quality of the films. Colouration efficiency and electrochromic reversibility were found to be maximum (21 mC/cm2 and 89%, respectively) for the films oxidized at 425 °C. The optical band gap energy of nickel oxide slightly varies with increase in annealing temperature.  相似文献   

19.
The effects of the PbO volatilization, excess Pb content of PbZr0.52Ti0.48 (PZT) precursor, PbTiO3 (PT) seeding layers and annealing condition on the microstructures, surface morphologies, preferred orientation and ferroelectric properties of PbZr0.52Ti0.48 films were systematically investigated. PZT films with a variety of excess Pb (0-20%) were spin-deposited on Si(1 0 0) and Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by sol-gel technique. The films composition, Pb/Zr/Ti/O atom rate and Pb loss were semiquantitative analyzed by X-ray photoelectron spectrometer (XPS). When the excess Pb of PZT precursor was 10%, the Pb/Zr/Ti/O atomic rate of the fabricated films was very close to the designed rate of 1:0.52:0.48:3. The XRD and AFM investigations confirmed that PT seeding layer promoted the PZT films perovskite phase transformation and grains growth with (1 1 0) plane preferred orientation, accordingly lowered perovskite phase crystallization temperature and reduced Pb loss. The PZT films annealed in O2 flow demonstrated better microstructure and ferroelectric properties comparing with films annealed in air by double remnant polarization increase and 8% coercive field increase. The underlying mechanism was also investigated.  相似文献   

20.
复合薄膜因其可具有比单组份薄膜更加优异的性能而得到广泛的应用。通过以膜层的防护、催化、电学、光学以及力学性能等复合思想为切入点,阐述了通过膜层的复合掺杂旨在增强合金的抗腐蚀性,提高润滑摩擦性能,改善膜层的导电性能以及进行光学薄膜折射率和光谱吸收的调控,增强膜层的硬度及拉伸强度等机械性能的方法。对国内外的相关前沿成果进行简要介绍,并对复合薄膜的未来发展进行展望,为相关领域的研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号