首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《Comptes Rendus Physique》2018,19(4):233-243
Many complex networks have recently been recognized to involve significant interdependence between different systems. Motivation comes primarily from infrastructures like power grids and communications networks, but also includes areas such as the human brain and finance. Interdependence implies that when components in one system fail, they lead to failures in the same system or other systems. This can then lead to additional failures finally resulting in a long cascade that can cripple the entire system. Furthermore, many of these networks, in particular infrastructure networks, are embedded in space and thus have unique spatial properties that significantly decrease their resilience to failures. Here we present a review of novel results on interdependent spatial networks and how cascading processes are affected by spatial embedding. We include various aspects of spatial embedding such as cases where dependencies are spatially restricted and localized attacks on nodes contained in some spatial region of the network. In general, we find that spatial networks are more vulnerable when they are interdependent and that they are more likely to undergo abrupt failure transitions than interdependent non-embedded networks. We also present results on recovery in spatial networks, the nature of cascades due to overload failures in these networks, and some examples of percolation features found in real-world traffic networks. Finally, we conclude with an outlook on future possible research directions in this area.  相似文献   

2.
《Comptes Rendus Physique》2018,19(5):337-340
Here we obtain explicit black hole solutions in Extension Gravity models with high-order derivative terms, while the Lichnerowicz-type theorem simplifies our analysis by vanishing Ricci's scalar curvature. We find out two explicit static, spherical solutions that satisfy the presented action: the first one is the same usual Schwarzschild solution and the other one is the new non-Schwarzschild solution. It means that Schwarzschild's solution following the no-hair theorem can describe any black hole object on each gravity theory. Without considering the first law of thermodynamics for it, we show that the non-Schwarzschild solution is depending on its set of constants, and then we consider its entropy and other thermodynamic parameters for specific values of the constants.  相似文献   

3.
《Comptes Rendus Physique》2018,19(3):134-145
A monumental shift from conventional lighting technologies (incandescent, fluorescent, high intensity discharge) to LED lighting is currently transpiring. The primary driver for this shift has been energy efficiency and associated cost savings. LED lighting is now more efficacious than any of the conventional lighting technologies with room to still improve. Near term, phosphor-converted LED packages have the potential for efficacy improvement between 160 lm/W (now) to 255 lm/W. Longer term, color-mixed LED packages have the potential for efficacy levels conceivably as high as 330 lm/W, though reaching these performance levels requires breakthroughs in green and amber LED efficiency. LED package efficacy sets the upper limit to luminaire efficacy, with the luminaire containing its own efficacy loss channels. In this paper, based on analyses performed through the U.S. Department of Energy Solid State Lighting Program, various LED and luminaire loss channels are elucidated, and critical areas for improvement identified. Beyond massive energy savings, LED technology enables a host of new applications and added value not possible or economical with previous lighting technologies. These include connected lighting, lighting tailored for human physiological responses, horticultural lighting, and ecologically conscious lighting. None of these new applications would be viable if not for the high efficacies that have been achieved, and are themselves just the beginning of what LED lighting can do.  相似文献   

4.
《Comptes Rendus Physique》2016,17(8):808-835
We review recent developments regarding the quantum dynamics and many-body physics with light, in superconducting circuits and Josephson analogues, by analogy with atomic physics. We start with quantum impurity models addressing dissipative and driven systems. Both theorists and experimentalists are making efforts towards the characterization of these non-equilibrium quantum systems. We show how Josephson junction systems can implement the equivalent of the Kondo effect with microwave photons. The Kondo effect can be characterized by a renormalized light frequency and a peak in the Rayleigh elastic transmission of a photon. We also address the physics of hybrid systems comprising mesoscopic quantum dot devices coupled with an electromagnetic resonator. Then, we discuss extensions to Quantum Electrodynamics (QED) Networks allowing one to engineer the Jaynes–Cummings lattice and Rabi lattice models through the presence of superconducting qubits in the cavities. This opens the door to novel many-body physics with light out of equilibrium, in relation with the Mott–superfluid transition observed with ultra-cold atoms in optical lattices. Then, we summarize recent theoretical predictions for realizing topological phases with light. Synthetic gauge fields and spin–orbit couplings have been successfully implemented in quantum materials and with ultra-cold atoms in optical lattices — using time-dependent Floquet perturbations periodic in time, for example — as well as in photonic lattice systems. Finally, we discuss the Josephson effect related to Bose–Hubbard models in ladder and two-dimensional geometries, producing phase coherence and Meissner currents. The Bose–Hubbard model is related to the Jaynes–Cummings lattice model in the large detuning limit between light and matter (the superconducting qubits). In the presence of synthetic gauge fields, we show that Meissner currents subsist in an insulating Mott phase.  相似文献   

5.
《Comptes Rendus Physique》2014,15(6):539-546
This is a review of a mathematical analysis of vortices in the Ginzburg–Landau model: phase transitions and effective energies that govern optimal patterns formed by the vortices, in particular the Abrikosov lattice, are discussed. Analogies with Coulomb gases are also mentioned.  相似文献   

6.
《Comptes Rendus Physique》2016,17(10):1072-1083
Thermoelectric devices are heat engines, which operate as generators or refrigerators using the conduction electrons as a working fluid. The thermoelectric heat-to-work conversion efficiency has always been typically quite low, but much effort continues to be devoted to the design of new materials boasting improved transport properties that would make them of the electron crystal–phonon glass type of systems. On the other hand, there are comparatively few studies where a proper thermodynamic treatment of the electronic working fluid is proposed. The present article aims at contributing to bridge this gap by addressing both the thermodynamic and transport properties of the thermoelectric working fluid covering a variety of models, including interacting systems.  相似文献   

7.
In this paper, we propose the design, fabrication and experiments of a macro-scale electrostatic vibration energy harvester (e-VEH), pre-charged wirelessly for the first time with a 2.4-GHz Cockcroft–Walton rectenna. The rectenna is designed and optimized to operate at low power densities and provide high voltage levels: 0.5 V at 0.76 μW/cm2 and 1 V at 1.53 μW/cm2. The e-VEH uses a Bennet doubler as a conditioning circuit. Experiments show a 23-V voltage across the transducer terminal, when the harvester is excited at 25 Hz by 1.5g of external acceleration. An accumulated energy of 275 μJ and a maximum available power of 0.4 μW are achieved.  相似文献   

8.
《Comptes Rendus Physique》2015,16(9):802-818
The electromagnetic field exposure of the population due to wireless communications originates from both down-link and up-link emissions. Although the main contribution comes generally from the latter (e.g., higher by three to five orders of magnitude for the 2G), the former must be considered as well, because they are continual, and as contributions can be competitive for some cases (e.g., in femtocells). Sensor and exposimeter networks (NW) can be deployed by the operators themselves (to enrich feedback information from their own NW) or by independent external stakeholders such as regulatory agencies or local authorities. When sensors are directly worn by a user, body proximity effects – notably the masking effect – can introduce significant errors in the ambient field measurement. A methodology of the statistical assessment of this harmful effect is proposed in this article. It is mainly based on electromagnetic simulations (and partly on measurements) of a triaxial sensor – composed of three orthogonal wideband probes devoted to the evaluation of the field components – placed at different positions of a set of whole body phantoms. The main original contribution of the proposed approach is that both the isolated sensor calibration procedure and the assessment of the measurement errors are based on statistical analyses accounting for the propagation environment. The quantitative results are obtained using statistical channel models for polarimetric and non-polarimetric measurements in various propagation scenarios. Some quantitative results examples are presented. Eventually, preliminary corrections schemes are proposed.  相似文献   

9.
《Comptes Rendus Physique》2013,14(4):381-392
The paper describes and explains the most surprising Woodʼs anomaly: the total absorption of a plane wave by a shallow metallic grating.After a numerical and experimental evidence of the total absorption, we develop a quantitative phenomenological theory. Assuming that the anomalies are caused by the excitation of surface plasmon polaritons on the grating surface, we use theorems on analytic functions of the complex variable for representing the amplitudes of the scattered waves accurately through a phenomenological formula.The original rigorous grating theory used for numerical computations is outlined and some practical applications of strong absorptions are presented.  相似文献   

10.
《Comptes Rendus Physique》2019,20(4):349-363
We study an agent-based model of evolution of wealth distribution in a macroeconomic system. The evolution is driven by multiplicative stochastic fluctuations governed by the law of proportionate growth and interactions between agents. We are mainly interested in interactions increasing wealth inequality, that is, in a local implementation of the accumulated advantage principle. Such interactions destabilise the system. They are confronted in the model with a global regulatory mechanism that reduces wealth inequality. There are different scenarios emerging as a net effect of these two competing mechanisms. When the effect of the global regulation (economic interventionism) is too weak, the system is unstable and it never reaches equilibrium. When the effect is sufficiently strong, the system evolves towards a limiting stationary distribution with a Pareto tail. In between there is a critical phase. In this phase, the system may evolve towards a steady state with a multimodal wealth distribution. The corresponding cumulative density function has a characteristic stairway pattern that reflects the effect of economic stratification. The stairs represent wealth levels of economic classes separated by wealth gaps. As we show, the pattern is typical for macroeconomic systems with a limited economic freedom. One can find such a multimodal pattern in empirical data, for instance, in the highest percentile of wealth distribution for the population in urban areas of China.  相似文献   

11.
《Comptes Rendus Physique》2018,19(3):146-158
A rapid increase in the performance and quality of white LED light sources has changed the dynamics of electricity access in the last 10 years, reaching tens of millions of people with electric light who previously had no viable alternatives to fuel-based lighting, which is dangerous and expensive. Eliminating fuel-based lighting is a key public health, safety, social equality, and environmental opportunity that is now achievable. Technology advances in LEDs, other super-efficient appliances, solar photovoltaic generation, advanced batteries, and coordinating information technology systems have combined to significantly expand the reach of off-grid energy systems. With support and effort, it is plausible that small “pico-solar” and “solar home” systems could serve over a billion people within a generation, providing basic but highly valued services. Continued progress can be achieved with attention to continued improvements in technology, supporting a growing range of new businesses and enterprises in energy access markets, and synergy with broader human development effort around access to clean water, financial inclusion, and fair access to resources.  相似文献   

12.
《Comptes Rendus Physique》2019,20(4):244-261
We present a short review based on the nonlinear q-voter model about problems and methods raised within statistical physics of opinion formation (SPOOF). We describe relations between models of opinion formation, developed by physicists, and theoretical models of social response, known in social psychology. We draw attention to issues that are interesting for social psychologists and physicists. We show examples of studies directly inspired by social psychology like: “independence vs. anticonformity” or “personality vs. situation”. We summarize the results that have been already obtained and point out what else can be done, also with respect to other models in SPOOF. Finally, we demonstrate several analytical methods useful in SPOOF, such as the concept of effective force and potential, Landau's approach to phase transitions, or mean-field and pair approximations.  相似文献   

13.
《Comptes Rendus Physique》2014,15(10):875-883
Since the first atom interferometry experiments in 1991, measurements of rotation through the Sagnac effect in open-area atom interferometers have been investigated. These studies have demonstrated very high sensitivity that can compete with state-of-the-art optical Sagnac interferometers. Since the early 2000s, these developments have been motivated by possible applications in inertial guidance and geophysics. Most matter-wave interferometers that have been investigated since then are based on two-photon Raman transitions for the manipulation of atomic wave packets. Results from the two most studied configurations, a space-domain interferometer with atomic beams and a time-domain interferometer with cold atoms, are presented and compared. Finally, the latest generation of cold atom interferometers and their preliminary results are presented.  相似文献   

14.
《Comptes Rendus Physique》2015,16(8):761-772
Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly.  相似文献   

15.
《Comptes Rendus Physique》2019,20(5):402-418
The Fourier law of heat conduction describes heat diffusion in macroscopic systems. This physical law has been experimentally tested for a large class of physical systems. A natural question is to know whether it can be derived from the microscopic models using the fundamental laws of mechanics.  相似文献   

16.
《Comptes Rendus Physique》2019,20(5):429-441
Energy transport can be influenced by the presence of other conserved quantities. We consider here diffusive systems where energy and the other conserved quantities evolve macroscopically on the same diffusive space–time scale. In these situations, the Fourier law depends also on the gradient of the other conserved quantities. The rotor chain is a classical example of such systems, where energy and angular momentum are conserved. We review here some recent mathematical results about the diffusive transport of energy and other conserved quantities, in particular for systems where the bulk Hamiltonian dynamics is perturbed by conservative stochastic terms. The presence of the stochastic dynamics allows us to define the transport coefficients (thermal conductivity) and in some cases to prove the local equilibrium and the linear response argument necessary to obtain the diffusive equations governing the macroscopic evolution of the conserved quantities. Temperature profiles and other conserved quantities profiles in the non-equilibrium stationary states can be then understood from the non-stationary diffusive behavior. We also review some results and open problems on the two step approach (by weak coupling or kinetic limits) to the heat equation, starting from mechanical models with only energy conserved.  相似文献   

17.
18.
《Comptes Rendus Physique》2018,19(6):451-483
In this review, we provide an introduction to and an overview of some more recent advances in real-time dynamics of quantum impurity models and their realizations in quantum devices. We focus on the Ohmic spin–boson and related models, which describe a single spin-1/2 coupled with an infinite collection of harmonic oscillators. The topics are largely drawn from our efforts over the past years, but we also present a few novel results. In the first part of this review, we begin with a pedagogical introduction to the real-time dynamics of a dissipative spin at both high and low temperatures. We then focus on the driven dynamics in the quantum regime beyond the limit of weak spin–bath coupling. In these situations, the non-perturbative stochastic Schrödinger equation method is ideally suited to numerically obtain the spin dynamics as it can incorporate bias fields hz(t) of arbitrary time-dependence in the Hamiltonian. We present different recent applications of this method: (i) how topological properties of the spin such as the Berry curvature and the Chern number can be measured dynamically, and how dissipation affects the topology and the measurement protocol, (ii) how quantum spin chains can experience synchronization dynamics via coupling with a common bath. In the second part of this review, we discuss quantum engineering of spin–boson and related models in circuit quantum electrodynamics (cQED), quantum electrical circuits, and cold-atoms architectures. In different realizations, the Ohmic environment can be represented by a long (microwave) transmission line, a Luttinger liquid, a one-dimensional Bose–Einstein condensate or a chain of superconducting Josephson junctions. We show that the quantum impurity can be used as a quantum sensor to detect properties of a bath at minimal coupling, and how dissipative spin dynamics can lead to new insight in the Mott–superfluid transition.  相似文献   

19.
《Comptes Rendus Physique》2018,19(7):589-598
This paper presents a comprehensive investigation at the microscopic scale of various pigments composed of chromium from the French ‘Manufacture de Sèvres’ to establish the origin of color in glazes. Electron microscopy coupled with X-ray diffraction allows the determination of the microstructure and composition of the crystalline phases after firing. X-ray absorption spectroscopy reveals subtle changes in the medium-range ordering around Cr with high spatial resolution, in the pigment grain or at the pigment/glass interface. Principal results indicate systematic and common changes whatever the pigment types: (i) Cr-enrichment for the final crystals, that controls the coloration of the glaze, (ii) migration of specific elements such as Al or Zn from the pigments to the amorphous part of the glaze, and (iii) crystallization of anorthite in the near proximity of the altered Cr-bearing crystalline pigments.  相似文献   

20.
《Comptes Rendus Physique》2019,20(4):262-274
We consider the herding-to-non-herding transition caused by idiosyncratic choices or imperfect imitation in the context of the Kirman Model for financial markets, or equivalently the Noisy Voter Model for opinion formation. In these original models, this is a finite-size transition that disappears for a large number of agents. We show how the introduction of two different mechanisms makes this transition robust and well defined. A first mechanism is nonlinear interactions among agents taking into account the nonlinear effect of local majorities. The second one is aging, so that the longer an agent has been in a given state the more reluctant she becomes to change state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号