首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luminescence properties of Lu2O3:Eu3+ and Lu2O3:Tb3+ nanocrystalline powders with the particle size varying from 46 to 6 nm were studied under excitation by synchrotron radiation in the photon energy range (up to ∼22.5 eV) covering the region where the processes of multiplication of electronic excitation occur. It was found that the excitation spectra of Tb3+ emission from all Lu2O3:Tb3+ nanopowders have similar behavior, whereas the shape of the excitation spectra of Eu3+ emission from Lu2O3:Eu3+ nanopowders strongly depends on the particle size. The difference in the behavior of Lu2O3:Eu3+ and Lu2O3:Tb3+ nanophosphor systems was explained by different mechanisms of the energy transfer from the host to Eu3+ or Tb3+ ions (either the hole or electron recombination mechanism, respectively), which are differently influenced by losses of electronic excitations near the particle surface.  相似文献   

2.
Low temperature quenching and high efficiency CaSc2O4:Ce3+ (CSO:Ce3+) phosphors co-doped with Tm3+, La3+ and Tb3+ ions were prepared by a solid state method and the phase-forming, morphology, luminescence and application properties of these phosphors were investigated. The results showed that co-doping of Tm3+, La3+ and Tb3+ ions can improve the luminescence properties and decrease temperature quenching of CSO:Ce3+ phosphor remarkably. High efficiency green-light-emitting diodes were fabricated with the prepared phosphors and InGaN blue-emitting (∼460 nm) chips. The good performances of the green-light-emitting LEDs made from co-doped CSO:Ce3+ phosphors confirm the luminescence enhancement and indicate that Tm3+, La3+ and Tb3+ co-doped CSO:Ce3+ phosphors are suitable candidates for the fabrication of high efficiency white LEDs.  相似文献   

3.
Nanocrystal rods of Eu3+/Tb3+-co-doped ZrO2 were synthesized using a simple chemical precipitation technique. Both ions were successfully doped into the Zr4+ ion site in a mixed structure containing both monoclinic and tetragonal phases. The Eu3+ or Tb3+ singly doped zirconia produced red and green luminescence which are characteristics of Eu3+ and Tb3+ ions, respectively. The co-doped zirconia samples produced blue emission from defect states transitions in the host ZrO2, red and green luminescence from dopant ions giving cool to warm white light emissions. The phosphors were efficiently excited by ultraviolet and near-ultraviolet/blue radiations giving white and red light, respectively. The decay lifetime was found to increase with increasing donor ion concentration contrary to conventional observations reported by previous researchers. Weak quadrupole–quatdrupole multipolar process was responsible for energy transfer from Tb3+ (donor) ion to Eu3+ ion. No energy back-transfer from Eu3+ to Tb3+ ion was observed from the excitation spectra. Temperature-dependent photoluminescence shows the presence of defects at low temperature, but these defects vanished at room temperature and beyond. The Eu3+/Tb3+-co-doped ZrO2 nanocrystal rod is a potential phosphor for white light application using UV as an excitation source. Thermoluminescence measurements show that the inclusion of Tb3+ ion increases trap depths in the host zirconia.  相似文献   

4.
Blue phosphor, LiSrPO4:Eu2+, was prepared by solid-state reaction method under a weak reductive atmosphere and investigated by means of photoluminescence, concentration quenching process, and temperature dependence of luminescence. These results show that LiSrPO4:Eu2+ can be efficiently excited by the UV-visible light of 250–440 nm and exhibits bright blue emission. Furthermore, Eu2+-doped LiSrPO4 phosphor shows high thermally stable luminescence comparable to commercial phosphor BaMgAl10O17:Eu2+ (BAM). Two bright blue LEDs were fabricated by incorporating an InGaN-based near-UV chip with the obtained phosphor LiSrPO4:Eu2+ and BAM, respectively. Their luminescence properties were compared based on different forward-bias currents. All the characteristics suggest that LiSrPO4:Eu2+ is a good blue phosphor candidate for creating white light in phosphor-conversion white LEDs.  相似文献   

5.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

6.
In this paper, Eu3+ β-diketone Complexes with the two ligands 1-(2-naphthoyl)-3, 3, 3-trifluoroacetonate (TFNB) and 2’2-bipyridine (bpy) have been synthesized. Furthermore, we reported a systematical study of the co-fluorescence effect of Eu(TFNB)3bpy doped with inert rare earth ions (La3+, Gd3+ and Y3+) and luminescence ion Tb3+. The co-luminescence effect can be found by studying the luminescence spectra of the doped complexes, which means that the existence of the other rare earth ions (La3+, Y3+, Gd3+ and Tb3+) can enhance the luminescence intensity of the central Eu3+, which may be due to the intramolecular energy transfer between rare earth ions and Eu3+. The efficient intramolecular energy transfer in all the complexes mainly occurs between the ligand TFNB and the central Eu3+. Full characterization and detail studies of luminescence properties of all these synthesized materials were investigated in relation to co-fluorescence effect between the central Eu3+ and other inert ions. Further investigation into the luminescence properties of all the complexes show that the characteristic luminescence of the corresponding Eu3+ through the intramolecular energy transfers from the ligand to the central Eu3+. Meantime, the differences in luminescence intensity of the 5D07F2 transition, in the 5D0 lifetimes and in the 5D0 luminescence quantum efficiency among all the synthesized materials confirm that the doped complex Eu0.5Tb0.5(TFNB)3bpy exhibits higher 5D0 luminescence quantum efficiency and longer lifetime than the pure Eu(TFNB)3bpy complex and other materials.  相似文献   

7.
Eu2+- and Eu3+-Zn2GeO4 were prepared by the high temperature solid-state reaction method. The phase purity and crystallinity of Zn2GeO4:Eu samples were characterized by X-ray diffraction (XRD). The excitation spectra, the emission spectra and the luminescence decay curves of the Eu2+- and Eu3+-Zn2GeO4 were investigated. Zn2GeO4:Eu2+ gives a bluish-green luminescence with one emission band located at 467 nm, and Zn2GeO4:Eu3+ presents an reddish-orange color due to the transition (5D07FJ, J = 1 and 2) of the Eu3+ ions. The luminescence decay curves of Eu2+ and Eu3+ provide complementary evidence to the mixed valence of europium (Eu2+, Eu3+) in Zn2GeO4 host. These indicate that the mixed valence of europium (Eu2+, Eu3+) coexists in Zn2GeO4 host prepared in an oxidizing atmosphere. The abnormal reduction phenomenon of Eu3+→Eu2+ in Zn2GeO4 host prepared in an oxidizing atmosphere was reported and discussed on the basis of the charge compensation model.  相似文献   

8.
Droop, the decrease of efficiency with increased power density, became a major topic with InGaN LEDs, after its introduction in 2007. This paper provides insight into droop in localized center luminescence phosphors, exemplified here by Eu2+ doped materials. This topic is of increasing importance, as high brightness blue LEDs have reached outputs >1 W/mm2. The nonlinearities in phosphor quantum efficiency result in drive‐dependent color point shift and reduction of overall efficiency of phosphor converted white LEDs which utilize Eu2+ activated phosphors. The efficiency quenching can be traced back to two processes, well‐known in laser physics, excited state absorption or/and cross relaxation by Foerster/Dexter transfer. Both processes lead to reduction in phosphor efficiency, but they can be differentiated. Understanding the root cause of efficiency quenching opens ways to minimize the practical consequences. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
The optical properties of SrSi2O2N2 doped with divalent Eu2+ and Yb2+ are investigated. The Eu2+ doped material shows efficient green emission peaking at around 540 nm that is consistent with 4f7→4f65d transitions of Eu2+. Due to the high quantum yield (90%) and high quenching temperature (>500 K) of luminescence, SrSi2O2N2:Eu2+ is a promising material for application in phosphor conversion LEDs. The Yb2+ luminescence is markedly different from Eu2+ and is characterized by a larger Stokes shift and a lower quenching temperature. The anomalous luminescence properties are ascribed to impurity trapped exciton emission. Based on temperature and time dependent luminescence measurements, a schematic energy level diagram is derived for both Eu2+ and Yb2+ relative to the valence and conduction bands of the oxonitridosilicate host material.  相似文献   

10.
A several of LiLaSiO4: xTb3+, ySm3+ (LLSO) phosphors were synthesized by high-temperature solid-phase reaction. Through SEM, XRD and fluorescence spectrometer, the phase, morphology, luminescence properties and energy transfer of the samples were systematically analyzed and discussed. Under an excitation of 378 nm wavelength, LLSO: xTb3+ phosphors emit green light, and the concentration quenching point of Tb3+ ions was x = 0.08. In LLSO: xTb3+, ySm3+ phosphors, When Sm3+ ions doping molar mass fraction increases, the fluorescence intensity of Tb3+ ion decreases while the fluorescence intensity of Sm3+ ions first strengthen and then weaken. The concentration quenching point of Sm3+ ions was y = 0.04. By changing the proportion of Sm3+ and Tb3+ ions, the luminous color can be adjusted from green to red. There is effective energy transfer between Tb3+→Sm3+. The molar mass fraction of doping Sm3+ ions is y = 0.10, the energy transfer efficiency reaches 96.67%. The energy transfer mechanism is the quadrupole-quadrupole interaction. The quantum yield is 22.34%. Therefore, LLSO: xTb3+, ySm3+ phosphors have certain potential application value in the field of ultraviolet-near ultraviolet white LEDs.  相似文献   

11.
In Al2O3 rich Ba-aluminate: Eu phosphors a green luminescence band involving Eu is found next to the blue Eu2+-luminescence. The green band is ascribed to associates of Eu and oxygen ions at Ba sites. These OBa ions also influence the concentration quenching behaviour of the Ba aluminate with high Eu content. The drop in the quantum efficiency of Ba-aluminate: Eu2+ on decreasing the Eu content of phosphors is not related to the presence of OBa. It is explained by the presence of Ba-vacancies. No green luminescence was observed in Mg-rich β-alumina type Eu2+ phosphors. Also, the quenching of the luminescence at higher Eu concentrations is less. Most probably, Mg2+ ions, positioned in between OBa and Eu2+, block the interaction between last-named ions.  相似文献   

12.
The processes of excitation energy transfer in phosphors based on single-crystal Tb3Al5O12:Ce (TbAG:Ce) and Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet films have been investigated. These films are considered to be promising materials for screens for X-ray images and luminescence converters of blue LED radiation. The conditions for excitation energy transfer from the matrix (Tb3+ cations) to Ce3+ and Eu3+ ions in TbAG:Ce and TbAG:Ce,Eu phosphors have been analyzed in detail. It is established that a cascade process of excitation energy transfer from Tb3+ ions to Ce3+ and Eu3+ ions and from Ce3+ ions to Eu3+ ions is implemented in TbAG:Ce,Eu via dipole-dipole interaction and through the Tb3+ cation sublattice.  相似文献   

13.
Eu3+ luminescence is studied in the two polymorphic forms of RbGd3F10: Eu3+. In the phases where Gd3+ is partly replacedby Y3+ in order to obtain an independent variation of Eu3+ concentration, the quenching of Gd3+ luminescence by Eu3+ ions takes place very quickly with increasing Eu3+ concentration. So the transfer between Gd3+ and Eu3+ is very efficient. Besides, an important self quenching occurs as well between Gd3+ ions as between Eu3+ ions, showing strong interactions.  相似文献   

14.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

15.
《Radiation measurements》2000,32(4):343-348
Ultraviolet radiation induced changes in photoluminescence (PL) and thermally stimulated luminescence (TSL) of europium activated calcium sulphate (CaSO4:Eu3+, Eu2+) and terbium doped calcium fluoride (CaF2:Tb3+) phosphors have been studied. PL measurements suggest conversion of Eu3+ to Eu2+ on 254 nm irradiation corresponding to charge transfer band of Eu3+ ions and reduction of Eu2+ ions with 365 nm illumination representing a f–d transition of Eu2+ ions. Similar studies carried out on CaF2:Tb3+ phosphor, however, do not show any significant wavelength specific changes. The integrated TSL output appears to be rate-dependent for both phosphors. The wavelength dependent changes in TSL output observed for CaSO4:Eu phosphor have been correlated with those obtained in PL studies. The changes in TSL and PL characteristics of CaF2:Tb3+ phosphor have been explained on the basis of stabilisation of traps based on matrix specific charge similarities.  相似文献   

16.
This letter reports the novel three emission bands based on phosphate host matrix, KBaPO4 doped with Eu2+, Tb3+, and Sm3+ for white light-emitting diodes (LEDs). The phosphors were synthesized by solid-state reaction and thermal stability was elucidated by measuring photoluminescence at higher temperatures. Eu2+-doped KBaPO4 phosphor emits blue luminescence with a peak wavelength at 420 nm under maximum near-ultraviolet excitation of 360 nm. Tb3+-doped KBaPO4 phosphor emits green luminescence with a peak wavelength at 540 nm under maximum near-ultraviolet excitation of 370 nm. Sm3+-doped KBaPO4 phosphor emits orange-red luminescence with a peak wavelength at 594 nm under maximum near-ultraviolet excitation of 400 nm. The thermal stabilities of KBaPO4:Ln (Ln=Eu2+, Tb3+, Sm3+), in comparison to commercially available YAG:Ce3+ phosphor were found to be higher in a wide temperature range of 25-300 °C.  相似文献   

17.
Excitation and luminescence properties of Eu3+, Tb3+ and Er3+ ions in lead phosphate glasses have been studied. From excitation spectra of Eu3+ ions, the electron–phonon coupling strength and phonon energy of the glass host were calculated and compared to that obtained by Raman spectroscopy. Main intense and long-lived luminescence bands are related to the 5D07F2 (red) transition of Eu3+, the 5D47F5 (green) transition of Tb3+ and the 4I13/24I15/2 (near-infrared) transition of Er3+. The critical transfer distances, the donor–acceptor interaction parameters and the energy transfer probabilities were calculated using the fitting of the luminescence decay curves from 5D0 (Eu3+), 5D4 (Tb3+) and 4I13/2 (Er3+) excited states. The energy transfer probabilities for Eu3+ (5D0), Tb3+ (5D4) and Er3+ (4I13/2) are relatively small, which indicates low self-quenching luminescence of rare earth ions in lead phosphate glasses.  相似文献   

18.
The optical properties of SrSi2AlO2N3 doped with Eu2+ and Yb2+ are investigated towards their applicability in LEDs. The Eu2+-doped material shows emission in the green, peaking around 500 nm. The emission is ascribed to the 4f65d1–4f7 transition on Eu2+. In view of the too low quantum efficiency and the considerable thermal quenching of the emission at the operation temperature of high power LED (>1W/mm2) this phosphor is only suitable for application in low power LEDs. The Yb2+ emission shows an anomalously red-shifted emission compared to Eu2+, which is characterized by a larger FWHM, a larger Stokes shift and lower thermal quenching temperature. The emission is ascribed to self-trapped exciton emission. The Yb2+ activated phosphor is found to be unsuitable for the use in any phosphor-converted LEDs.  相似文献   

19.
The possibility to use Tb3+ as luminescence sensitizer for enhancement of the conversion efficiency of vacuum-ultraviolet (VUV) radiation into visible light was examined. We studied the luminescence properties of K3Tb(PO4)2 and Ba3Tb(PO4)3 activated by Eu3+, and of SrAl12O19 co-doped with Mn2+ and Tb3+ at excitation over the 120 to 300 nm wavelength range. It is shown that Tb3+ ions, exhibiting a strong absorption band in the VUV, can provide efficient sensitization of Eu3+ and Mn2+ emissions for excitation in this spectral range, giving rise to intense red and green luminescence, respectively. This study provides a proof for the concept of VUV sensitization, which enables the engineering of luminescence materials with improved efficiency for excitation from a noble gas discharge.  相似文献   

20.
Sensitized luminescence behavior of lanthanide (Ln=Eu3+, Tb3+) macrocyclic cyclen (1,4,7,10-tetraazacyclododecane) complexes bearing one or four benzophenone (BP) moieties as antenna (LnL1 and LnL4) has been studied in water. Despite higher molar extinction coefficient of EuL4 owing to four antennae, it shows only one-thirtieth the luminescence intensity of EuL1. Energy level of triplet excited-state of BP antenna (ET) is only a few kJ mol−1 higher than that of 5D2 excited-state of Eu3+, thus promoting a back energy transfer (BET) from 5D2 of Eu3+ to ground-state BP antennae. On EuL4 bearing four antennae, BET occurs more rapidly than that on EuL1, thus exhibiting much weaker luminescence. For Tb complexes, the energy gap between ET of BP antenna and 5D4 excited state of Tb3+ is large enough (>13 kJ mol−1), such that practically no BET occurs. The luminescence intensity of TbL4 is, however, lower (two-third) than that of TbL1. Time-resolved luminescence measurement reveals that hydration number of Tb3+ within TbL4 is twice that within TbL1. This is because the structural distortion of ligands on TbL4, caused by an intramolecular dipole-dipole interaction among the BP antennae, allows coordination of higher number of H2O molecules to Tb3+, thus leading to a strong Tb luminescence quenching via O-H oscillators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号