首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
平衡体系热力学推导涨落的前提是涨落必须很小,如果得到一个发散的结果说明这一涨落是不可靠的.对一些体系温度涨落的热力学结果,在温度趋于绝对零度时是发散的,这时必须用统计物理来处理.对这些体系进行统计物理处理的结果表明,涨落在温度趋于绝对零度时是趋于零的. 关键词: 热力学与统计物理 涨落  相似文献   

2.
We introduce a model of interacting lattices at different resolutions driven by the two-dimensional Ising dynamics with a nearest-neighbor interaction. We study this model both with tools borrowed from equilibrium statistical mechanics as well as non-equilibrium thermodynamics. Our findings show that this model keeps the signature of the equilibrium phase transition. The critical temperature of the equilibrium models corresponds to the state maximizing the entropy and delimits two out-of-equilibrium regimes, one satisfying the Onsager relations for systems close to equilibrium and one resembling convective turbulent states. Since the model preserves the entropy and energy fluxes in the scale space, it seems a good candidate for parametric studies of out-of-equilibrium turbulent systems.  相似文献   

3.
4.
The definition of temperature in non-equilibrium situations is among the most controversial questions in thermodynamics and statistical physics. In this paper, by considering two numerical experiments simulating charge and phonon transport in graphene, two different definitions of local lattice temperature are investigated: one based on the properties of the phonon–phonon collision operator, and the other based on energy Lagrange multipliers. The results indicate that the first one can be interpreted as a measure of how fast the system is trying to approach the local equilibrium, while the second one as the local equilibrium lattice temperature. We also provide the explicit expression of the macroscopic entropy density for the system of phonons, by which we theoretically explain the approach of the system toward equilibrium and characterize the nature of the equilibria, in the spatially homogeneous case.  相似文献   

5.
The Green–Kubo relation, the Einstein relation, and the fluctuation–response relation are representative universal relations among measurable quantities that are valid in the linear response regime. We provide pedagogical proofs of these universal relations for stochastic many-body systems. Through these simple proofs, we characterize the three relations as follows. The Green–Kubo relation is a direct result of the local detailed balance condition, the fluctuation–response relation represents the dynamic extension of both the Green–Kubo relation and the fluctuation relation in equilibrium statistical mechanics, and the Einstein relation can be understood by considering thermodynamics. We also clarify the interrelationships among the universal relations.  相似文献   

6.
For this new journal dealing with nonlinear phenomena we review the setting of several important current problems in the physics of condensed matter (solids, liquids). We show how the concepts embodied in the mathematical analysis of solitons provide systematic new insight (i.e., a paradigm) into a central question: what are the important physical configurations in nonlinear condensed systems? Following these general issues we summarize the analysis of the dynamics and equilibrium thermodynamics (i.e., statistical mechanics) of non-linear one-dimensional model systems, and we indicate how the solitonic configurational phenomenology provides a basis for dynamic effects which are seen both experimentally and in molecular dynamics computer simulations. Many problems in condensed matter differ from the more familiar nonlinear mechanical or hydrodynamic applications in that finite temperature thermal fluctuations must be considered along with systematic dynamics.  相似文献   

7.
We apply the non-equilibrium fluctuation theorems developed in the statistical physics to the thermodynamics of black hole horizons. In particular, we consider a scalar field in a black hole background. The system of the scalar field behaves stochastically due to the absorption of energy into the black hole and emission of the Hawking radiation from the black hole horizon. We derive the stochastic equations, i.e. Langevin and Fokker-Planck equations for a scalar field in a black hole background in the ?→0 limit with the Hawking temperature ?κ/2π fixed. We consider two cases, one confined in a box with a black hole at the center and the other in contact with a heat bath with temperature different from the Hawking temperature. In the first case, the system eventually becomes equilibrium with the Hawking temperature while in the second case there is an energy flow between the black hole and the heat bath. Applying the fluctuation theorems to these cases, we derive the generalized second law of black hole thermodynamics. In the present paper, we treat the black hole as a constant background geometry.Since the paper is also aimed to connect two different areas of physics, non-equilibrium physics and black holes physics, we include pedagogical reviews on the stochastic approaches to the non-equilibrium fluctuation theorems and some basics of black holes physics.  相似文献   

8.
Living systems are open systems, where the laws of nonequilibrium thermodynamics play the important role. Therefore, studying living systems from a nonequilibrium thermodynamic aspect is interesting and useful. In this review, we briefly introduce the history and current development of nonequilibrium thermodynamics, especially that in biochemical systems. We first introduce historically how people realized the importance to study biological systems in the thermodynamic point of view. We then introduce the development of stochastic thermodynamics, especially three landmarks: Jarzynski equality, Crooks’ fluctuation theorem and thermodynamic uncertainty relation. We also summarize the current theoretical framework for stochastic thermodynamics in biochemical reaction networks, especially the thermodynamic concepts and instruments at nonequilibrium steady state. Finally, we show two applications and research paradigms for thermodynamic study in biological systems.  相似文献   

9.
10.
11.
Even under healthy, basal conditions, physiologic systems show erratic fluctuations resembling those found in dynamical systems driven away from a single equilibrium state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic systems are being constantly perturbed by external and intrinsic noise? Or, do these fluctuations actually, contain useful, "hidden" information about the underlying nonequilibrium control mechanisms? We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. Specifically, we focus on interbeat interval variability as an important quantity to help elucidate possibly non-homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii) analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. The analytic tools we discuss may be used on a wider range of physiologic signals. We first review recent progress using two analysis methods--detrended fluctuation analysis and wavelets--sufficient for quantifying monofractual structures. We then describe recent work that quantifies multifractal features of interbeat interval series, and the discovery that the multifractal structure of healthy subjects is different than that of diseased subjects.  相似文献   

12.
13.
With the development of quantum thermodynamics [1], it turned out that the existence of a thermal equilibrium can be derived directly from quantum mechanics. This finding has raised the question, what other thermodynamic concepts could be applied to quantum systems and how they might emerge from quantum mechanics. Here, we discuss how the concept of work translates to quantum systems and how its emergence can be understood. Moreover, we show that even for small and simple quantum systems, work may be a meaningful concept. We then address the question of work fluctuations in quantum systems. We discuss the Jarzynski relation and its quantum counterparts and we show that corresponding relations hold even for open quantum systems.  相似文献   

14.
This work assembles some basic theoretical elements on thermal equilibrium, stability conditions, and fluctuation theory in self-gravitating systems illustrated with a few examples. Thermodynamics deals with states that have settled down after sufficient time has gone by. Time dependent phenomena are beyond the scope of this paper. While thermodynamics is firmly rooted in statistical physics, equilibrium configurations, stability criteria and the destabilizing effect of fluctuations are all expressed in terms of thermodynamic functions. The work is not a review paper but a pedagogical introduction which may interest theoreticians in astronomy and astrophysicists. It contains sufficient mathematical details for the reader to redo all calculations. References are only to seminal works or readable reviews. Delicate mathematical problems are mentioned but are not discussed in detail.  相似文献   

15.
We derive solutions to the Schwinger–Dyson equations on the Closed-Time-Path for a scalar field in the limit where backreaction is neglected. In Wigner space, the two-point Wightman functions have the curious property that the equilibrium component has a finite width, while the out-of equilibrium component has zero width. This feature is confirmed in a numerical simulation for scalar field theory with quartic interactions. When substituting these solutions into the collision term, we observe that an expansion including terms of all orders in gradients leads to an effective finite-width. Besides, we observe no breakdown of perturbation theory, that is sometimes associated with pinch singularities. The effective width is identical with the width of the equilibrium component. Therefore, reconciliation between the zero-width behaviour and the usual notion in kinetic theory, that the out-of-equilibrium contributions have a finite width as well, is achieved. This result may also be viewed as a generalisation of the fluctuation–dissipation relation to out-of-equilibrium systems with negligible backreaction.  相似文献   

16.
17.
Nonequilibrium work relations have fundamentally advanced our understanding of molecular processes. In recent years, fluctuation theorems have been extensively applied to understand transitions between equilibrium steady-states, commonly described by simple control parameters such as molecular extension of a protein or polymer chain stretched by an external force in a quiescent fluid. Despite recent progress, far less is understood regarding the application of fluctuation theorems to processes involving nonequilibrium steady-states such as those described by polymer stretching dynamics in nonequilibrium fluid flows. In this work, we apply the Crooks fluctuation theorem to understand the nonequilibrium thermodynamics of dilute polymer solutions in flow. We directly determine the nonequilibrium free energy for single polymer molecules in flow using a combination of single molecule experiments and Brownian dynamics simulations. We further develop a time-dependent extensional flow protocol that allows for probing viscoelastic hysteresis over a wide range of flow strengths. Using this framework, we define quantities that uniquely characterize the coil-stretch transition for polymer chains in flow. Overall, generalized fluctuation theorems provide a powerful framework to understand polymer dynamics under far-from-equilibrium conditions.  相似文献   

18.
We perform an analysis of preliminary data on hadron yields and fluctuations within the statistical hadronization ansatz. We describe the theoretical disagreements between different statistical models currently on the market and show how the simultaneous analysis of yields and fluctuations can be used to determine if one of them can be connected to underlying physics. We perform such an analysis on preliminary RHIC and SPS A–A data that includes particle yields, ratios and event-by-event fluctuations. We show that the equilibrium statistical model can not describe the K/π fluctuation measured at RHIC and SPS, unless an unrealistically small volume is assumed. Such a small volume then makes it impossible to describe the total particle multiplicity. The non-equilibrium model, on the other hand, describes both the K/π fluctuation and yields acceptably due to the extra boost to the π fluctuation provided by the high pion chemical potential. We show, however, that both models significantly over-estimate the p/π fluctuation measured at the SPS and speculate for the reason behind this. PACS 25.75.-q; 24.60.-k; 24.10.Pa  相似文献   

19.
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.  相似文献   

20.
We use Padoa's principle of independence of primitive symbols in axiomatic systems in order to show that time is dispensable in continuum thermodynamics, according to the axiomatic formulation of Gurtin and Williams. We also show how to define time by means of the remaining primitive concepts of Gurtin and Williams system. Finally, we introduce thermodynamics without time as a primitive concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号