共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure ZnO and Mn (1%wt.) doped-ZnO nanocrystalline particles were synthesized by reverse micelle method. The structural properties of the nanoparticles were investigated by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) techniques. UV–vis and photoluminescence (PL) spectroscopy was used for analyzing the optical properties of the nanoparticles. XRD and TEM results revealed the formation of ZnO and Mn doped-ZnO nanocrystalline particles with pure wurtzite crystal structure and average particle size of 18–21 nm. From UV–vis studies, the optical band gap energy of 3.53 and 3.58 eV obtained for ZnO and Mn doped-ZnO nanoparticles, respectively. Further optical analysis showed that the refractive index decreases from 2.35 to 1.35 with the change of wavelength. Room-temperature photoluminescence analysis of all samples showed four main emission bands including a strong UV emission band, a weak blue band, a week blue–green band, and a weak green band which indicated their high structural and optical quality. Moreover, the samples exposed to gamma rays sources of 137Cs and 60Co and their thermoluminescence properties were investigated. The thermoluminescence response of ZnO and Mn doped-ZnO nanocrystalline particles as a function of dose exhibited good linear ranges, which make them very promising detectors and dosimeters suitable for ionizing radiation. 相似文献
2.
C.P. LiB.H. Yang X.C. WangF. Wang M.J. LiL. Su X.W. Li 《Applied Surface Science》2011,257(14):5998-6003
ZnO films were prepared using radio frequency magnetron sputtering on Si(1 1 1) substrates that were sputter-etched for different times ranging from 10 to 30 min. As the sputter-etching time of the substrate increases, both the size of ZnO grains and the root-mean-square (RMS) roughness decrease while the thickness of the ZnO films shows no obvious change. Meanwhile, the crystallinity and c-axis orientation are improved by increasing the sputter-etching time of the substrate. The major peaks at 99 and 438 cm−1 are observed in Raman spectra of all prepared films and are identified as E2(low) and E2(high) modes, respectively. The Raman peak at 583 cm−1 appears only in the films whose substrates were sputter-etched for 20 min and is assigned to E1(LO) mode. Typical ZnO infrared vibration peak located at 410 cm−1 is found in all FTIR spectra and is attributed to E1(TO) phonon mode. The shoulder at about 382 cm−1 appearing in the films whose substrates were sputter-etched for shorter time (10-20 min) originates from A1(TO) phonon mode. The results of photoluminescence (PL) spectra reveal that the optical band gap (Eg) of the ZnO films increases from 3.10 eV to 3.23 eV with the increase of the sputter-etching time of the substrate. 相似文献
3.
纳米晶ZnO可见发射机制的研究 总被引:11,自引:7,他引:11
利用化学沉淀法制备了纳米ZnO粉体,室温下测量了样品的光致发光谱(PL)、X射线衍射谱(XRD),给出了样品的透射电子显微照片(TEM).X射线衍射(XRD)的结果表明:纳米晶ZnO具有六角纤锌矿晶体结构,颗粒呈球形或椭球形.观察到二个荧光发射带,中心波长分别位于398 nm的紫带和510 nm的绿光带.发现随退火温度升高,粒径增大,紫带的峰值减弱、绿带的峰值增强.证实了纳米晶ZnO绿光可见发射带来自氧空位形成的施主和锌空位形成的受主之间的复合. 相似文献
4.
《Current Applied Physics》2015,15(3):389-396
Ultrasound assisted wet-chemical method has been carried out to incorporate different metal and non-metal ions such as; Li, S and Ag into ZnO. Characteristic studies on the structural and optical properties of the samples especially; the ultra-violet (UV) light absorption have been carried out. X-ray diffraction (XRD) analysis shows the formation of hexagonal crystal structure of ZnO along with changes in crystallinity and micro-strain with impurity doping. The morphology of the doped samples changes from particle like structure to flower and rod like structures showing the influence of dopant ions on nano ZnO growth. Infra-red (IR) transmittance spectra give information about the presence of metal–oxygen bond along with other stretching and bending modes. UV–visible absorption studies show the narrowing and sharpening of UV absorption band along with a blue shift for the doped samples. This shows the intensification in the excitonic absorption in ZnO after doping specific elements which will find application in UV blocking agents. Photoluminescence (PL) measurement shows the presence of excitonic emission and emissions due to intrinsic defects and external impurities in UV and visible regions respectively. These emission bands show a change in their position and intensity which has been explained on the basis of the existence of impurity levels in the band gap of ZnO. 相似文献
5.
In this work, K-doped ZnO thin films were prepared by a sol–gel method on Si(111) and glass substrates. The effect of different K-doping concentrations on structural and optical properties of the ZnO thin films was studied. The results showed that the 1 at.% K-doped ZnO thin film had the best crystallization quality and the strongest ultraviolet emission ability. When the concentration of K was above 1 at.%, the crystallization quality and ultraviolet emission ability dropped. For the K-doped ZnO thin films, there was not only ultraviolet emission, but also a blue emission signal in their photoluminescent spectra. The blue emission might be connected with K impurity or/and the intrinsic defects (Zn interstitial and Zn vacancy) of the ZnO thin films. 相似文献
6.
7.
Effects of the substrate and oxygen partial pressure on the microstructures and optical properties of Ti-doped ZnO thin films 总被引:1,自引:0,他引:1
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed. 相似文献
8.
Meihui Li Jianping Xu Ximing Chen Xiaosong Zhang Yanyu Wu Ping Li Xiping Niu Chengyuan Luo Lan Li 《Superlattices and Microstructures》2012
Zn1−xCoxO nanocrystals with nominal Co doping concentrations of x = 0–0.1 were synthesized through a simple solution route followed by a calcining process. The doping effects on the structural, morphological and optical properties were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman, absorption and luminescence spectroscopy. The results indicated that a small amount of Co ions were incorporated into ZnO lattice structure, whereas the secondary phase of Co3O4 was segregated and precipitated at high Co doping concentrations, the solid solubility of Co ions in ZnO nanocrystals could be lower than 0.05. The spectra related to transitions within the tetrahedral Co2+ ions in the ZnO host crystal were observed in absorption and luminescence spectra. 相似文献
9.
将增益介质加入金属环构成的表面等离子体激元耦合共振波导,利用传输矩阵及时域有限差分方法研究了不同增益系数下该耦合共振波导的透射谱线、色散关系以及群折射率.结果表明,增益介质共振频率附近的反常色散及正常色散变化能有效影响由共振波导几何结构决定的色散关系曲线,且具有相反的效果,分别使其变得平坦和陡峭,从而放大和缩小由共振波导几何结构决定的群折射率.另外,增益系数随外加抽运光改变的特点使得加入增益介质的耦合共振波导具有传输性能可灵活调节特性.文章的研究对促进耦合共振波导在高密度光学集成中的广泛应用具有积极意义.
关键词:
增益介质
耦合共振波导
表面等离子体激元
群折射率 相似文献
10.
Morphology and optical investigations of ZnO pyramids and nanoflakes for optoelectronic applications
Zinc-oxide (ZnO) pyramidal and nanoflakes were grown by electrochemical deposition of Zn(NO3)2·6H2O on n-type Si substrate with different crystallographic orientations and on indium tin oxide (ITO)-coated glass. Various morphological shapes of deposited ZnO nanostructures were observed, which were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bulk modulus was calculated to determine the material stiffness. Two peaks were observed at room temperature photoluminescence spectrum, i.e., a near-band-edge (NBE) emission in the UV region and a broad deep-level emission (DLE) in the green emission region. The optical properties were calculated to confirm the specific models validity of ZnO nanostructures for optoelectronics. The measured and calculated values show good agreement with other data. 相似文献
11.
ZnO and ZnO:Al films were deposited onto glass substrates by the sol gel method using spin coating technique. The effects of aluminum dopant on the crystalline structure and orientation of the ZnO films have been investigated by X-ray diffraction (XRD) study. Surface morphology of the films has also been analyzed by a field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The average optical transmittance values of all the films is over >83% in the visible region. The optical band gap and Urbach energy values of these films were determined. The absorption edge shifted to the lower energy depending on the Al doping level. The shift of absorption edge is associated with shrinkage effect. The electrical conductivity of the ZnO film enhanced with the Al dopant. From the temperature dependence of conductivity measurements, the activation energy of the films was also calculated. 相似文献
12.
13.
Luminescence of ZnO nanopowders 总被引:3,自引:0,他引:3
The luminescence of ZnO nanocrystals prepared by different methods was studied under pulsed electron beam excitation. It is shown that the luminescence intensity depends on the nanocrystal sintering conditions and does not depend on the nanocrystal size within the range 10–50 nm. The relative luminescence intensities for the 3.32 eV (free exciton) and 3.20 eV (bound exciton) bands showed a dependence on nanocrystal size. The role of the nanocrystal surface in excitonic luminescence is discussed. 相似文献
14.
In this study, the optical properties of S- and Sn-doped ZnO nanobelts, grown by thermal evaporation, were investigated. The sulfur and tin contents in the nanobelts were about 12% and 8% (atomic), respectively. The average widths of the S- and Sn-doped ZnO nanobelts were 73 and 121 nm, respectively. Room temperature photoluminescence (PL) spectroscopy exhibits significantly different optical properties for the two types of nanobelts. The PL result of the S-doped ZnO nanobelts shows the broad visible emission with no detectable ultraviolet (UV) peak, while the PL result of the Sn-doped sample shows two emission bands, one related to UV emission with a strong peak at 376 nm that is blue-shifted by 4 nm in comparison to pure ZnO nanobelts, and another related to green emission with a weak peak. A weak peak in the UV region at 383 nm appeared after annealing the S-doped ZnO nanobelts at 600 °C. Additionally, the annealed S-doped nanobelts show a stronger peak in the visible emission region in comparison to that observed prior to annealing. The Sn-doped ZnO nanobelts are also affected by annealing, as the UV emission peak is blue-shifted to 372 nm after annealing. 相似文献
15.
Li Guan Baoting LiuQiang Li Yang ZhouJianxin Guo Guoqi JiaQingxun Zhao Yinglong WangGuangsheng Fu 《Physics letters. A》2011,375(5):939-945
Using first-principles method, electronic structure and optical properties of phosphorus-doped ZnO for the possible substitutional (PZn, PO) and interstitial (Ptet, Poct) doping are investigated. PO gives p-type conductivity, but others show n-type. PO and Ptet has a significant difference in optical properties due to the contribution of P 3p states at Fermi level. 相似文献
16.
Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions. 相似文献
17.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films. 相似文献
18.
CeOx与ZnO纳米复合粉体的制备及其发光性能 总被引:3,自引:0,他引:3
通过溶胶-凝胶法制备CeOx/ZnO纳米复合粉体,并对其结构和光致发光特性进行了研究。发现500℃烧结出的复合粉体在502nm处的绿光发射同纯ZnO的相比有显著的增强;600℃烧结的样品在603nm出现新的发光峰。通过XRD和XPS分析认为荧光增强的主要原因同粉体中铈主要以Ce^3 形式存在有关,新的发光峰可能来源于ZnO/CeO2界面处形成的新的能级跃迁。 相似文献
19.
Effect of intrinsic stress on the optical properties of nanostructured ZnO thin films grown by rf magnetron sputtering 总被引:2,自引:0,他引:2
In this paper we report the effect of deposition temperature on the structural and optical properties of ZnO thin films prepared by rf magnetron sputtering. The films grown at lower deposition temperatures were in a state of large compressive stress, whereas the films grown at higher temperature (450 °C) were almost stress free. In the absorption spectra, the ZnO excitonic and the Zn surface plasmon resonance (SPR) peaks have been observed. A redshift in the optical band gap of ZnO films has also been observed with the increase in the deposition temperature. The shift in the band gap calculated from the size effect did not match with the observed shift values and the observed shift has been attributed to the compressive stress present in the films. 相似文献
20.
Jia-Xiang Yang Lin Li Fei Wu Chuan-Kui Wang Huo-Hong Tang Xu-Tang Tao 《Journal of luminescence》2010,130(4):654-659
Two heterocycle-based derivatives that can be used as two-photon absorption chromophore, 9-butyl-3-(2, 6-diphenylpyridin-4-yl)-9H-carbazole (BDPYC) and 9-butyl-3-(4-(2, 6-diphenylpyridin-4-yl)styryl)-9H-carbazole (BDPSC) have been successfully synthesized and fully characterized by elemental analysis, IR, 1H NMR, 13C NMR and MS. The molecules possess D-π-A structures, but have different π bridge. The 9-butylcarbazole is used as a donor (D), and the pyridine ring is used as an acceptor (A). One- and two-photon absorption and excited fluorescence properties in various solvents were experimentally investigated. Two-photon initiated optical data recording experiments have been carried out under 740 nm laser radiation, and the possible mechanism of optical data storage is discussed based on theoretical calculations. 相似文献