首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《Physics letters. A》2019,383(22):2652-2657
The equilibrated grain boundary groove shape of solid Al in equilibrium with Al-Sn-Mg eutectic liquid was observed by using a Bridgman type directional solidification apparatus. The ratio of the thermal conductivity of the equilibrated liquid to the thermal conductivity of solid Al has been obtained as 0.91. In addition, the average Gibbs-Thomson coefficient, Γ=(4.20±0.35)×108Km, the solid-liquid interfacial energy, σSL=180.68±23.48mJ/m2 and the grain boundary energy, σGB=309.30±29.47mJ/m2, in the Al/Al-Sn-Mg system have been calculated from the measured grain boundary shapes.  相似文献   

2.
A contour deformation method (CDM) in the complex momentum plane has been successfully extended and implemented to probe resonances in atomic and molecular systems. Specifically, solution of the Schrödinger equation is performed in momentum space with momentum deformed on a contour in the complex plane. The bound, resonant, and complex continuum states could be directly revealed from the eigenvalues of the Schrödinger equation in the complex momentum plane. The calculations of shape resonances in electron scattering with Na+ in Debye plasmas (one channel), and in the charge transfer process H?(1s2)+Li(1s22s) (12Σ+) H(1s)+Li?(1s22s2) (22Σ+) (coupled channels) are given as illustrative examples. It is shown that calculated results from CDM agree very well with those extracted from the eigenphase sum of scattering theories. The effectiveness of CDM is also demonstrated by comparing its results with those obtained by the complex rotation scaling and exterior complex scaling methods. The convergence of CDM results can be obtained by increasing the momentum integration region and the number of integration points. The studied examples demonstrate that CDM could be a powerful tool for studies of resonances in complex atomic and molecular systems.  相似文献   

3.
4.
5.
Excited beryllium has been observed to decay into electron-positron pairs with a 6.8σ anomaly. The process is properly explained by a 17 MeV proto-phobic vector boson. In present work, we consider a family-nonuniversal U(1) that is populated by a U(1) gauge boson Z and a scalar field S, charged under U(1) and singlet under the Standard Model (SM) gauge symmetry. The SM chiral fermion and scalar fields are charged under U(1) and we provide them to satisfy the anomaly-free conditions. The Cabibbo-Kobayashi-Maskawa (CKM) matrix is reproduced correctly by higher-dimension Yukawa interactions facilitated by S. The vector and axial-vector current couplings of the Z boson to the first generation of fermions do satisfy all the bounds from the various experimental data. The Z boson can have kinetic mixing with the hypercharge gauge boson and S can directly couple to the SM-like Higgs field. The kinetic mixing of Z with the hypercharge gauge boson, as we show by a detailed analysis, generates the observed beryllium anomaly. We find that beryllium anomaly can be properly explained by a MeV-scale sector with a minimal new field content. The minimal model we construct forms a framework in which various anomalous SM decays can be discussed.  相似文献   

6.
7.
8.
Singly-excited states of the two-electron atom cease being bound when Z1 (from above), the outer orbital becoming infinitely diffuse. The asymptotic relationslimZ1?(Z?1)k(1sns)1,3S|r12k|(1sns)1,3S=(n?1)s(0)|rk|(n?1)s(0), where k=?1,1,2,3,?, are demonstrated to hold. Here, (n?1)s(0) is a hydrogenic s orbital with principal quantum number (n?1). New, more nuanced light is shed on the already challenged dogma that the Pauli principle keeps the electrons further apart in the triplet than in the corresponding singlet.  相似文献   

9.
We propose two new type sine hyperbolic potentials V(x)=a2sinh2?(x)?ktanh2?(x) and V(x)=c2sinh4?(x)?ktanh2?(x). They may become single- or double-well potentials depending on the potential parameters a,c and k. We find that its exact solutions can be written as the confluent Heun functions Hc(α,β,γ,δ,η;z), in which the energy level E is involved inside the parameter η. The properties of the wave functions, which is strongly relevant for the potential parameters a,c and k, are illustrated.  相似文献   

10.
11.
12.
《Physics letters. A》2019,383(17):2090-2092
In this paper, we have used Monte Carlo (MC) method to simulate and study the temperature and doping effects on the electric conductivity of fullerene (C60). The results show that the band gap has reduced by the doping and the charge carrier transport is facilitated from valence band to conduction band by the temperature where is touched a 300 K. In this case, the conductivity reached a value of 4×107Scm1. The electric conductivity of C60 can increase by the triphenylmethane dye crystal violet (CV) alkali metal to reach 4×103Scm1 at 303 K. Our results of MC simulation have a good agreement with those extracted from literature [10], [33].  相似文献   

13.
14.
《Physics letters. A》2020,384(36):126930
We consider quantum bosons with contact interactions at the Lowest Landau Level (LLL) of a two-dimensional isotropic harmonic trap. At linear order in the coupling parameter g, we construct a large, explicit family of quantum states with energies of the form E0+gE1/4+O(g2), where E0 and E1 are integers. Any superposition of these states evolves periodically with a period of 8π/g until, at much longer time scales of order 1/g2, corrections to the energies of order g2 may become relevant. These quantum states provide a counterpart to the known time-periodic behaviors of the corresponding classical (mean field) theory.  相似文献   

15.
Conjugated diolefins are not only crucial intermediates in larger hydrocarbon pyrolysis and oxidation, but also key species in the formation and growth of polycyclic aromatic hydrocarbons (PAHs). In this work, we employed a sensitive UV laser diagnostic to measure absorption cross-sections and decomposition rates of three conjugated diolefins, namely 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), and 2,3-dimethyl-1,3-butadiene. The single-pass UV absorption diagnostic achieved a ppm-level detection limit between the wavelengths of 212.5 and 220.5 nm. The use of dilute conditions (119 – 500 ppm fuel in argon) enabled nearly isothermal measurements despite reaction enthalpy. Temperature-dependent absorption cross-sections were measured from room temperature to 1850 K and pressures ranging 0.75 – 1.50 bar in a shock tube. Decomposition of the molecules was observed at temperatures above ∼ 1350 K, and all three molecules exhibited similar activation energy. Around 1800 K, 2,3-dimethyl-1,3-butadiene decomposed twice as fast as isoprene and 4 times faster than 1,3-butadiene. Our measured overall decomposition rate coefficients are given as (unit of s  1, ± 20% uncertainty):k1(1,3butadiene)=9.65×109e(24,338KT)(14111823K)k2(isoprene)=1.86×1010e(24,341KT)(14641829K)k3(2,3dimethyl1,3butadiene)=8.64×1010e(25,845KT)(14011822K)1,3-Butadiene decomposition rate coefficients agree well with previous measurement at similar pressures. To our knowledge, this work reports first measurements of the decomposition rate coefficients of isoprene and 2,3-dimethyl-1,3-butadiene. As an additional application of the current UV diagnostic, we measured 1,3-butadiene decay time-histories during fuel-lean oxidation and compared our data with the predictions of AramcoMech 3.0. We updated the model with our measured 1,3-butadiene decomposition rate coefficients, which significantly improved the model prediction of fuel oxidation.  相似文献   

16.
17.
High pressure can effectively control the phase transition of MoTe2 in experiment, but the mechanism is still unclear. In this work, we show by first-principles calculations that the phase transition is suppressed and 1T phase becomes more stable under high pressure, which originates from the pressure-induced change of the interlayer band occupancies near the Fermi energy. Specifically, the interlayer states of 1T phase tend to be fully occupied under high pressure, while they keep partially occupied for the Td phase. The increase of the band occupancies makes the 1T phase more favorable in energy and prevents the structure changing from 1T to Td phase. Moreover, we also analyze the superconductivity under high pressure based on BCS theory by calculating the density of states and phonon spectra. Our results may shed some light on understanding the relationship between the interlayer band occupancy and crystal stability of MoTe2 under high pressures.  相似文献   

18.
Critical phenomena theory centers on the scaled thermodynamic potential per spin ?(β,h)=|t|pY(h|t|?q), with inverse temperature β=1/T, h=?βH, ordering field H, reduced temperature t=t(β), critical exponents p and q, and function Y(z) of z=h|t|?q. I discuss calculating Y(z) with the information geometry of thermodynamics. Scaled solutions are found to obtain with three admissible functions t(β): 1) t=e?Jβ, 2) t=β?1, and 3) t=βC?β, where J and βC are constants. For p=q, information geometry yields Y(z)=1+z2, consistent with the one-dimensional (1D) ferromagnetic Ising model.  相似文献   

19.
We find that the bulk moment of inertia per unit volume of a metal becoming superconducting increases by the amount me/(πrc), with me the bare electron mass and rc=e2/mec2 the classical electron radius. This is because superfluid electrons acquire an intrinsic moment of inertia me(2λL)2, with λL the London penetration depth. As a consequence, we predict that when a rotating long cylinder becomes superconducting its angular velocity does not change, contrary to the prediction of conventional BCS-London theory that it will rotate faster. We explain the dynamics of magnetic field generation when a rotating normal metal becomes superconducting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号