首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A study of the aqueous H3O+(OH-)/H2VO4-/(2R,3R)-tartrate system has been performed at 273 K in a 1.0 mol/L Na+(Cl-) ionic medium using 51V NMR spectroscopy. In this relatively complicated system, more than 12 different species were observed. Ligand concentration, vanadate concentration, and pH variation studies were carried out, particularly for the range of pH 5.8-8.0 and for pH 2.4. Chemical shifts, vanadium-ligand stoichiometry, and also composition and formation constants for some, but not all, species are given. Despite some reduction of vanadium(V) to vanadium(IV) in an acidic medium at pH approximately 2.4, the stoichiometries of the principal species in solution at this pH were determined. Electrospray ionization mass spectra for some solutions were obtained and were in accordance with the conclusions drawn from the speciation studies. A series of crystalline vanadium(V) tartrato complexes M4[V4O8(tart)2].aq were also prepared and characterized. X-ray diffraction studies of Na4[V4O8(rac-tart)2].12H2O (1) and (NEt4)4[V4O8((R,R)-tart)2].6H2O (2) revealed unique tetranuclear [V4O8(tart)2]4- ions for which the {V4O4} rings have boat conformations.  相似文献   

2.
Reaction between [VO(acac)2] and H2L (H2L are the hydrazones H2sal-nah I or H2sal-fah II; sal = salicylaldehyde, nah = nicotinic acid hydrazide and fah = 2-furoic acid hydrazide) in methanol leads to the formation of oxovanadium(IV) complexes [VOL.H2O](H2L = I: 1, H2L = II: 4). Aerial oxidation of the methanolic solutions of 1 and 4 yields the dinuclear oxo-bridged monooxovanadium(V) complexes [{VOL}2mu-O](H2L = I: 2, H2L = II: 5). These dinuclear complexes slowly convert, in excess methanol, to [VO(OMe)(MeOH)L](H(2)L = I: 9, H(2)L = II: 10), the crystal and molecular structures of which have been determined, confirming the ONO binding mode of the dianionic ligands in their enolate form. Reaction of aqueous K[VO3] with the ligands at pH ca. 7.5 results in the formation of [K(H2O)][VO2L](H2L = I: 3, H2L = II: 6). Treatment of 3 and 6 with H2O2 yields (unstable) oxoperoxovanadium(v) complexes K[VO(O2)L], the formation of which has been monitored spectrophotometrically. Acidification of methanolic solutions of 3 and 6 with HCl affords oxohydroxo complexes, while the neutral complexes [VO2(Hsal-nah)] 7 and [VO2(Hsal-fah)] 8 were isolated on treatment of aqueous solutions of 3 and 6 with HClO4. These complexes slowly transform into 9 and 10 in methanol, as confirmed by 1H, 13C and 51V NMR. The anionic complexes 3 and 6 catalyse the oxidative bromination of salicylaldehyde in water in the presence of H2O2/KBr to 5-bromosalicylaldehyde and 3,5-dibromosalicylaldehyde, a reaction similar to that exhibited by vanadate-dependent haloperoxidases. They are also catalytically active for the oxidation of benzene to phenol and phenol to catechol and p-hydroquinone.  相似文献   

3.
A detailed study of the quaternary aqueous H+/H2VO4-/H2O2/picolinate (Pi-) system has been performed at 25 degrees C in 0.150 M Na(Cl) medium using quantitative 51 V NMR (500 MHz) and potentiometric data (glass electrode). In the ternary H+/H2VO4-/Pi- system, six complexes have been found in the pH region 1-10. In the quaternary H+/H2VO4-/H2O2/Pi- system, eight additional complexes have been found. Generally, equilibria are fast in both systems. The rate of peroxide decomposition depends on the species in solution. Chemical shifts, compositions and formation constants for the species are given. Equilibrium conditions and the fit of the model to the experimental data are illustrated in distribution diagrams. Possible formation of mixed ligand species with imidazole, lactic acid and citric acid have been investigated and ruled out under the same experimental conditions. Structural proposals are given, based on 1)C NMR data and available crystal structures.  相似文献   

4.
The speciation in the quaternary aqueous H+/H2VO4-/H2O2/citrate (Cit3-) and H+/H2VO4-/Cit3-/L-(+)-lactate (Lac-) systems has been determined at 25 degrees C in the physiological medium of 0.150 M Na(Cl). A combination of 51V NMR integral intensities and chemical shift (Bruker AMX500) as well as potentiometric data (glass electrode) have been collected and evaluated with the computer program LAKE, which is able to treat multimethod data simultaneously. The pKa-values for citric acid have been determined as 2.94, 4.34 and 5.61. Altogether six vanadate-citrate species have been found in the ternary H+/H2VO4-/Cit3- system in the pH region 2-10, only two of which are mononuclear. Reduction of vanadium(V) becomes more pronounced at pH < 2. Solutions, in which reduction occurred to any extent, were excluded from all calculations. In the quaternary H+/H2VO4-/H2O2/Cit3- system, eight complexes have been found in addition to all binary and ternary complexes over the pH region 2-10, including three mononuclear species. Equilibria in general are fast, but the significant and rapid decomposition of peroxide in acidic solutions limited the final model to pH > 4. In the quaternary H+/H2VO4-/Cit3-/Lac- system, two mixed-ligand species have been determined, with the compositions V2CitLac2- and V2CitLac3- (pKa = 5.0). To our knowledge, this is the first time such complexes have been reported for vanadium(V). 51V NMR chemical shifts, compositions and formation constants are given, and equilibrium conditions are illustrated in distribution diagrams as well as the fit of the model to the experimental data. When suitable, structural proposals are given, based on 13C NMR measurements and available literature data of related compounds.  相似文献   

5.
The vanadium(IV,V) complexes formed with two aldaric acids (D-saccharic or D-glucaric acid, and mucic or galactaric acid) in aqueous solution were characterised by employing pH-potentiometry, EPR, multinuclear NMR and UV-VIS spectroscopy. The stoichiometry and stability constants of the complexes formed were determined at 25 degrees C and ionic strength I= 0.2 mol dm(-3)(KCl). The spectral measurements revealed that vanadium(IV,V) coordinates first at the terminal COO(-) functions, forming mononuclear complexes. At pH > 3, through the metal ion-induced deprotonation and coordination of the neighbouring alcoholic functions, (COO(-), O(-)) coordinated dinuclear complexes are formed, which predominate in the pH range 4-8. In the basic pH range, the ligand molecules are displaced and binary metal hydroxo and oxo complexes are present. EPR measurements at room temperature and at 140 K proved that formation of the VO(iv) dimers is more enhanced at room temperature, but at 140 K their dissociation is favoured. An interesting pH-dependent cis-trans isomeric equilibrium was assumed and analysed by EPR and molecular modelling in the case of the complexes [(VO)(2)L(2)H(x)](x=-2 and -4). Joint evaluation of the pH-potentiometric and (51)V NMR measurements revealed that both aldaric acids are able to bind an excess of vanadium(V), through the formation of oligomeric 2:1 and 3:2 species, besides the 2:2 species formed with VO(IV).  相似文献   

6.
The two complexes formed in the aqueous vanadooxalate system, V(Ox)- and V(Ox)2(3-), have been characterized using 51V, 13C and 17O NMR. For the V(Ox)2(3-) complex, two peaks are observed in 13C NMR and four in 17O NMR. This leads to the conclusion that each oxalate ligand has two different distances to the VO2 group. This fact, together with the peak integrals and the chemical shifts, indicates strongly that the hexacoordinate complex [VO2(C2O4)2]3- found in single-crystal X-ray structure determinations persists in aqueous solution. The dependence of the 13C NMR linewidths upon temperature reveals two types of dynamic processes: (1) a rearrangement in which the two different V-Oox switch places and (2) an exchange of the oxalate ligands in the [VO2(C2O4)2]3- complex with free oxalate, probably through a dissociative process. Rate constants and activation parameters for the two dynamic processes involving [VO2(C2O4)2]3- have been calculated from the shape of the 13C NMR signals. For the V(Ox)- complex, only one relatively narrow peak is obtained in 13C NMR and three peaks in 17O. This fact, as well as the relative positions of these peaks, is in accordance with a pentacoordinate complex [VO2(C2O4)H2O]-, where the two V-O distances to the oxalate ligand are equal. We also show that, in the pH range 0.8-6.6, there is no protonation of the studied complexes, in agreement with previous potentiometric results.  相似文献   

7.
Bell JH  Pratt RF 《Inorganic chemistry》2002,41(10):2747-2753
Although aryl hydroxamic acids are well-known to form coordination complexes with vanadate (V(V)), the nature of these complexes at neutral pH and submillimolar concentrations, the conditions under which such complexes inhibit various serine amidohydrolases, is not well established. A series of qualitative and quantitative experiments, involving UV/vis, (1)H NMR, and (51)V NMR spectroscopies, established that both 1:1 and 1:2 vanadate/hydroxamate complexes form at pH 7.5, with the former dominating at submillimolar concentrations. Formation constants for the complexes of several aryl and alkyl hydroxamic acids were determined; for example, for benzohydroxamic acid, the stepwise formation constants of the 1:1 and 1:2 complexes were 3000 and 400 M(-1), respectively. The (51)V chemical shift of the 1:1 4-nitrobenzohydroxamic acid complex was -497 ppm, and that of its unsubstituted analogue was -498 ppm. A (1)H-(15)N HSQC spectrum of the 4-nitrobenzo-(15)N-hydroxamic acid/vanadate complex indicated the presence of an N-H group with (15)N and (1)H chemical shifts of 115 and 5.83 ppm, respectively. A (13)C NMR spectrum of the complex of 4-nitrobenzo-(13)C-hydroxamic acid with vanadate displayed a resonance at 170.1 ppm and thus a coordination-induced shift (CIS) of +3.8 ppm. In contrast, the CIS value of an established 1:2 complex, thought to contain chelated hydroxamic acid ligands, was +11.9 ppm. These spectral data led to the following structural picture of 1:1 complexes of vanadate and aryl hydroxamic acids. They contain penta- or hexa-coordinated vanadium. The ligand is in the hydroxamate rather than hydroximate form. The ligand is presumably bound to vanadium through the hydroxamic hydroxyl oxygen, but the hydroxamic acid carbonyl oxygen interacts weakly with vanadium. These species are the most likely candidates for the inhibitors of serine amidohydrolases found in vanadate/hydroxamic acid mixtures.  相似文献   

8.
The speciation in the aqueous H(+)/H(2)VO(4)(-)/phosphate (dihydrogen phosphate, P(-)) and H(+)/H(2)VO(4)(-)/H(2)O(2)/P(-) systems has been determined in the physiological medium of 0.150 M Na(Cl) at 25 degrees C. A combination of multinuclear NMR integral and chemical shift (Bruker AMX500) as well as potentiometric data (glass electrode) have been collected and treated simultaneously by the computer program LAKE. The pK(a)-values for phosphoric acid have been determined by potentiometric and (31)P NMR chemical shift data, and have been found to be 1.85 +/- 0.02, 6.69 +/- 0.02 and 11.58 +/- 0.07. The errors given are 3sigma. Altogether nine vanadate-phosphate species have been found in the ternary H(+)/H(2)VO(4)(-)/P(-) system in the pH region 1-11, with the following compositions: VP, VP(2) and V(14)P. Equilibrium is very slow in acidic solutions, requiring more than 3 months for the formation of V(14)P species. On the other hand, less than 15 min are needed for equilibration at neutral and alkaline pH. In the quaternary H(+)/H(2)VO(4)(-)/H(2)O(2)/P(-) system, four new species have been found in addition to all binary and ternary complexes. They are of VXP and VX(2)P compositions, where X denotes the peroxo ligand. (51)V and (31)P NMR chemical shifts, compositions and formation constants are given, and equilibrium conditions are illustrated in distribution diagrams as well as the fit of the model to the experimental data. Biological and medical relevance of the species is also discussed and physiological conditions are modelled.  相似文献   

9.
The speciation in the aqueous H(+)/H(2)VO(4)(-)/H(2)O(2)/maltol (Ma), H(+)/H(2)VO(4)(-)/uridine (Ur) and H(+)/H(2)VO(4)(-)/H(2)O(2)/Ur systems was determined in the physiological medium of 0.150 M Na(Cl) at 25 degrees C. A combination of quantitative (51)V NMR (Bruker AMX500) and potentiometric data (glass electrode) was collected and treated simultaneously by the computer program LAKE. In the quaternary maltol system, the two species VXMa(2)(-) and VX(2)Ma(2-) (where X denotes the peroxo ligand) were found in the pH region 5-10, in addition to all binary and ternary complexes. Their formation was fast. In the ternary uridine (H(+)/H(2)VO(4)(-)/Ur) subsystem, altogether three vanadate-uridine (V-Ur) species were found in the pH region 4-10, with compositions VUr(2-), V(2)Ur(2)(2-) and V(2)Ur(2)(3-). Equilibrium was fast except in weakly acidic solutions when slowly decomposing decavanadates formed. In the quaternary H(+)/H(2)VO(4)(-)/H(2)O(2)/Ur system, five additional species were found at pH > 7. They were of VXUr and VX(2)Ur compositions. Their formation was fast. Formation constants, compositions and (51)V NMR chemical shifts are given for all the species found in the systems, and equilibrium conditions are illustrated in distribution diagrams as well as the fit of the model to the experimental data. Biological and medical relevance of the species (in the treatment of diabetes) are also discussed, with pseudo-physiological conditions modelled.  相似文献   

10.
The speciation in the quaternary aqueous H+/H2VO4-/H2O2/L-alpha-alanyl-L-histidine (Ah) system has been determined from quantitative 51V NMR measurements and potentiometric data (glass electrode). The study was performed in 0.150 M Na(Cl) medium at 25 degrees C. Data were evaluated with the computer program LAKE, which is able to treat combined EMF and NMR data. The pKa values for Ah were determined as 8.06, 6.72 and 2.64. In the ternary H+/H2VO4-/Ah system, two complexes, (H+)p(H2VO4-)q(Ah)r, for which (p, q, r) values of (0, 1, 1) and (1, 1, 1) with log beta(0,1,1) = 2.52 +/- 0.03 and log beta(1,1,1) = 9.40 +/- 0.05 (pKa = 6.88), respectively, explain all data. The errors given are 3sigma. In the quaternary H+/H2VO4-/H2O2/Ah system, eight complexes were determined in addition to all binary and ternary complexes, four with a V/X/Ah ratio 1:1:1 and four with a ratio 1:2:1 (X = peroxo ligand). VX2Ah2- and VX2Ah- (pKa = 8.19) are the main complexes and predominate in the pH range 5 to 9. Three additional minor species have also been found but their compositions could not be determined owing to their small amounts. Equilibria are slow, significant decomposition of peroxide occurs only in acidic solutions. Data in the pH range 5 to 10 have been used for the LAKE calculations. Chemical shifts, compositions, and formation constants for the eight quaternary complexes are given, and equilibrium conditions are illustrated in distribution diagrams. Structural proposals for VX2Ah2- and VX2Ah- are made from 1H and 13C NMR measurements.  相似文献   

11.
The aqueous solution and solid state properties of (4-hydroxypyridine-2,6-dicarboxylato)dioxovanadate(V) (also referred to as (4-hydroxydipicolinato)dioxovanadate(V) or (chelidamato)dioxovanadate(V) and abbreviated [VO(2)(dipic-OH)](-)) were investigated. By using (1)H, (13)C, (17)O, and (51)V NMR 1D and 2D spectroscopy, the species present in solution, together with pK(a) values, equilibrium constants, and labilities, were characterized. The complex is most stable at acidic pH down to pH 1 where it is protonated. The stability of this complex is higher than that of the parent dipicolinatodioxovanadate(V) complex. The dipic-OH ligand is coordinated in a tridentate manner throughout the pH range studied, and the vanadium(V) atom is five-coordinate. Solid state structures of (NMe(4))[VO(2)(dipic-OH)].H(2)O (monoclinic, P2(1)/n) and Na[VO(2)(dipic-OH)].2H(2)O (triclinic, P1) were determined. The discrete complex anions in (NMe(4))[VO(2)(dipic-OH)].H(2)O are connected by hydrogen bonding between the hydroxyl group, a water molecule, and a carboxylate oxygen atom. Changing the counterion from NMe(4)(+) to sodium ion in Na[VO(2)(dipic-OH)].2H(2)O leads to the formation of a polymeric structure. Dynamic processes in solution were explored by using (1)H and (13)C EXSY NMR spectroscopy; exchange between complex and free ligand below pH 4 was observed. The differences between the dipicolinatodioxovanadate(V) parent complex and the [VO(2)(dipic-OH)](-) complex in the solid state and in solution demonstrate the subtle consequences of the one substitutional difference between the two ligands. The insulin-mimetic properties of this compound are likely to be of mechanistic interest in developing an understanding of the mode of action of the few known insulin-mimetic vanadium(V) complexes.  相似文献   

12.
A number of 4-substituted, dipicolinatodioxovanadium(V) complexes and their hydroxylamido derivatives were synthesized to characterize the solid state and solution properties of five- and seven-coordinate vanadium(V) complexes. The X-ray crystal structures of Na[VO2dipic-NH2].2H2O (2) and K[VO2dipic-NO2] (3) show the vanadium adopting a distorted, trigonal-bipyramidal coordination environment similar to the parent coordination complex, [VO2dipic]- (1), reported previously as the Cs+ salt. The observed differences in the chemical shifts of the complexes both in the 1H (ca. 0.7-1.4 ppm) and 51V (ca. 1-11 ppm) NMR spectra were consistent with the electron-donating or electron-withdrawing properties of the substituent groups, respectively. Stoichiometric addition of a series of hydroxylamine ligands (H2NOH, MeHNOH, Me2NOH, and Et2NOH) to complexes 1-3 led to the formation of seven-coordinate vanadium(V) complexes. The X-ray crystal structure of [VO(dipic)(Me2NO)(H2O)].0.5H2O (1c) was found to be similar to the previously characterized complexes [VO(dipic)(H2NO)(H2O)] (1a) and [VO(dipic)(OO-tBu)(H2O)]. While only slight differences in the 1H NMR spectra were observed upon addition of the hydroxylamido ligand, the signals in the 51V NMR spectra change by up to 100 ppm. The addition of the hydroxylamido ligand increased the complex stability of complexes 2 and 3. Evidence for a nonstoichiometric redox reaction was found for the monoalkyl hydroxylamine ligand. The reaction of an unsaturated five-coordinate species with a hydroxylamine to form a seven-coordinate vanadium complex will, in general, dramatically increase the amounts of the vanadium compound that remain intact at pH values near neutral.  相似文献   

13.
51V quadrupolar central transition NMR spectra of buffered (pH 7.6-8.0) solutions of bovine apo-transferrin (Tf) and bovine prostatic acid phosphatase (Pp) treated with vanadate show normal features (chemical shifts between -515 and -542 ppm) corresponding to the complexation of VO2+ to the Tf binding site and the Pp active centre, respectively. Addition of H2O2 leads to the temporary formation of complexed VO(O2)+ (delta approximately -595). Vanadate-dependent bromoperoxidase from the alga Ascophyllum nodosum exhibits an unusually high shielding both for the native (delta = -931) and the peroxo form (delta = -1135) of the enzyme. A resonance at -471 ppm is traced back to an inactive form with oxovanadium(V) in a trigonal-bipyramidal array.  相似文献   

14.
To shed light on the role of V(V) complexes as pro-drugs for their V(IV) analogues, the kinetics of the reduction reactions of [VO2(ma)2]- or [VO2(ema)2]- (Hma = maltol, Hema = ethylmaltol), with ascorbic acid or glutathione, have been studied in aqueous solution by spectrophotometric and magnetic resonance methods. EPR and 51V NMR studies suggested that the vanadium(V) in each complex was reduced to vanadium(IV) during the reactions. All the reactions studied showed first-order kinetics when the concentration of ascorbic acid or glutathione was in large excess and the observed first-order rate constants have a linear relationship with the concentrations of reductant (ascorbic acid or glutathione). Potentiometric results revealed that the most important species in the neutral pH range is [VO2(L)2]- for the V(V) system where L is either ma- or ema-. An acid dependence mechanism was proposed from kinetic studies with varying pH and varying maltol concentration. The good fits of the second order rate constant versus pH or the total concentration of maltol, and the good agreement of the constants obtained between fittings, strongly supported the mechanism. Under the same conditions, the reaction rate of [VO2(ma)2]- with glutathione is about 2000 times slower than that of [VO2(ma)2]- with ascorbic acid, but an acid dependence mechanism can also be used to explain the results for the reduction with glutathione. Replacing the methyl group in maltol with an ethyl group has little influence on the reduction rate with ascorbic acid, and the kinetics are the same no matter whether [VO2(ma)2]- or [VO2(ema)2]- is reduced.  相似文献   

15.
Hydrolysis of dipeptides glycylserine (Gly-Ser), leucylserine (Leu-Ser), histidylserine (His-Ser), glycylalanine (Gly-Ala), and serylglycine (Ser-Gly) was examined in vanadate solutions by means of (1)H, (13)C, and (51)V NMR spectroscopy. In the presence of a mixture of oxovanadates, the hydrolysis of the peptide bond in Gly-Ser proceeds under the physiological pH and temperature (37 °C, pD 7.4) with a rate constant of 8.9 × 10(-8) s(-1). NMR and EPR spectra did not show evidence for the formation of paramagnetic species, excluding the possibility of V(V) reduction to V(IV) and indicating that the cleavage of the peptide bond is purely hydrolytic. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest hydrolysis observed at pD 7.4. Combined (1)H, (13)C, and (51)V NMR experiments revealed formation of three complexes between Gly-Ser and vanadate, of which only one complex, designated Complex 2, formed via coordination of amide oxygen and amino nitrogen to vanadate, is proposed to be hydrolytically active. Kinetic experiments at pD 7.4 performed by using a fixed amount of Gly-Ser and increasing amounts of Na(3)VO(4) allowed calculation of the formation constant for the Gly-Ser/VO(4)(3-) complex (K(f) = 16.1 M(-1)). The structure of the hydrolytically active Complex 2 is suggested also on the basis of DFT calculations. The energy difference between Complex 2 and the major complex detected in the reaction mixture, Complex 1, is calculated to be 7.1 kcal/mol in favor of the latter. The analysis of the molecular properties of Gly-Ser and their change upon different modes of coordination to the vanadate pointed out that only in Complex 2 the amide carbon is suitable for attack by the hydroxyl group in the Ser side chain, which acts as an effective nucleophile. The origin of the hydrolytic activity of vanadate is most likely a combination of the polarization of amide oxygen in Gly-Ser due to the binding to vanadate, followed by the intramolecular attack of the Ser hydroxyl group.  相似文献   

16.
51V quadrupole coupling and chemical shielding tensors have been determined from 51V magic-angle spinning (MAS) NMR spectra at a magnetic field of 14.1 T for nine divalent metal metavanadates: Mg(VO3)2, Ca(VO3)2, Ca(VO3)(2).4H2O, alpha-Sr(VO3)2, Zn(VO3)2, alpha- and beta-Cd(VO3)2. The manifold of spinning sidebands (ssbs) from the central and satellite transitions, observed in the 15V MAS NMR spectra, have been analyzed using least-squares fitting and numerical error analysis. This has led to a precise determination of the eight NMR parameters characterizing the magnitudes and relative orientations of the quadrupole coupling and chemical shielding tensors. The optimized data show strong similarities between the NMR parameters for the isostructural groups of divalent metal metavanadates. This demonstrates that different types of metavanadates can easily be distinguished by their anisotropic NMR parameters. The brannerite type of divalent metal metavanadates exhibits very strong 51V quadrupole couplings (i.e., CQ = 6.46-7.50 MHz), which reflect the highly distorted octahedral environments for the V5+ ion in these phases. Linear correlations between the principal tensor elements for the 51V quadrupole coupling tensors and electric field gradient tensor elements, estimated from point-monopole calculations, are reported for the divalent metal metavanadates. These correlations are used in the assignment of the NMR parameters for the different crystallographic 51V sites of Ca(VO3)(2).4H2O, Pb(VO3)2, and Ba(VO3)2. For alpha-Sr(VO3)2, with an unknown crystal structure, the 51V NMR data strongly suggest that this metavanadate is isostructural with Ba(VO3)2, for which the crystal structure has been reported. Finally, the chemical shielding parameters for orthovanadates and mono- and divalent metal metavanadates are compared.  相似文献   

17.
[VO2F(L-L)] (L-L = 2,2'-bipyridyl, 1,10-phenanthroline, Me2N(CH2)2NMe2) and [VO2F(py)2] (py = pyridine) have been prepared from the corresponding [VOF3(L-L)] or [VOF3(py)2] and O(SiMe3)2 in MeCN solution. VO2F (itself made from VOF3 and O(SiMe3)2 in MeCN) forms [Me4N][VO2F2] with [Me4N]F, but does not react with neutral N- or O-donor ligands. VO2Cl, prepared from VOCl3 and ozone, reacts with 2,2'-bipyridyl or 1,10-phenanthroline to form [VO2Cl(L-L)], with pyridine or pyridine-N-oxide (L) to produce [VO2Cl(L)2], and with OPPh3 or OAsPh3 (L') gives [VO2Cl(L')]. A second product from the OPPh3 system is the ionic [VO2(OPPh3)3][VO2Cl2] containing a trigonal bipyramidal cation. Neither VO2F nor VO2Cl form isolable complexes with MeCN, thf or MeO(CH2)2OMe, and both are reduced by P-, As-, S- or Se-donor ligands. [Ph4As][VO2X2] (X = F or Cl) react with 2,2'-bipyridyl to form [VO2X(2,2'-bipyridyl)], but similar reactions with weaker O-donor ligands fail. The complexes have been characterised by IR, multinuclear NMR (1H, 19F, 51V or 31P) and UV-visible spectroscopy. X-ray crystal structures are reported for [VO2F(py)2], [VO2Cl(L)2] (L = py or pyNO) and [VO2(OPPh3)3][VO2Cl2].  相似文献   

18.
(51)V solid-state NMR and density functional theory (DFT) investigations are reported for a series of pentacoordinate dioxovanadium(V)-dipicolinate [V(V)O(2)-dipicolinate] and heptacoordinate aquahydroxylamidooxovanadium(V)-dipicolinate [V(V)O-dipicolinate] complexes. These compounds are of interest because of their potency as phosphatase inhibitors as well as their insulin enhancing properties and potential for the treatment of diabetes. Experimental solid-state NMR results show that the electric field gradient tensors in the V(V)O(2)-dipicolinate derivatives are affected significantly by substitution on the dipicolinate ring and range from 5.8 to 8.3 MHz. The chemical shift anisotropies show less dramatic variations with respect to the ligand changes and range between -550 and -600 ppm. To gain insights on the origins of the NMR parameters, DFT calculations were conducted for an extensive series of the V(V)O(2)- and V(V)O-dipicolinate complexes. To assess the level of theory required for the accurate calculation of the (51)V NMR parameters, different functionals, basis sets, and structural models were explored in the DFT study. It is shown that the original x-ray crystallographic geometries, including all counterions and solvation water molecules within 5 A of the vanadium, lead to the most accurate results. The choice of the functional and the basis set at a high level of theory has a relatively minor impact on the outcome of the chemical shift anisotropy calculations; however, the use of large basis sets is necessary for accurate calculations of the quadrupole coupling constants for several compounds of the V(V)O(2) series. These studies demonstrate that even though the vanadium compounds under investigations exhibit distorted trigonal bipyramidal coordination geometry, they have a "perfect" trigonal bipyramidal electronic environment. This observation could potentially explain why vanadate and vanadium(V) adducts are often recognized as potent transition state analogs.  相似文献   

19.
The complexes [VO(O2)Hbpa]+ (1a), [VO(O2)bpa] (1b, Hbpa = bis(picolyl)-beta-alanine), [VO(O2)heida]- (2, H2heida =N-(2-hydroxyethyl)iminodiacetic acid), [VO(O2)(3OH-pic)2]- (3a), [VO(O2)(3OH-pic)2]-/[V(O2)2(3OH-pic)2]- (3b, 3OH-pic = 3-hydroxypicolinic acid), [VO(O2)(3OH-pa)2] (6, 3OH-pa = 3-hydroxypicolylamide), [VO2(3OH-pic)2]- (4), [VO(tBuO2)(3OH-pic)2] (5) and [VO(tBuO2)(3OH-pa)2]2+ (7) have been characterised. The structures of 21a[ClO4].1b.2.25H2O, K.2H2O, [NH4].H2O and [nBu4]3b are reported. Supramolecular patterns arise from intermolecular hydrogen bonds, the relevance of which for the peroxo/hydroperoxo intermediates in oxo transfer reactions catalysed by vanadate-dependent haloperoxidases is addressed. Specific solution patterns have been analysed by 51V and 17O NMR.  相似文献   

20.
The reaction of vanadate(V) with a series of dipeptides (Val-Gln, Ala-Gln, Gly-Gln, Gly-Glu, and Ala-Gly) was investigated by UV-visible spectroscopy and multinuclear ((51)V, (14)N, (13)C) NMR spectroscopy in solution. It was possible to evaluate the formation constants of the corresponding complexes for which a molecular structure was proposed. Complex formation is favored by the presence of a functionalized or a sterically demanding side chain. The Val-Gln dipeptide which combines both properties exhibits one of the highest formation constant reported so far for dipeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号