首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The substrate-induced oxidation upon prolonged annealing in UHV of ultrathin films of Ni and Cr vapor deposited on yttria-stabilized zirconia YSZ(100) was studied by X-ray photoelectron spectroscopy (XPS) to obtain information about the oxidation mechanism, determine the available quantity of reactive oxygen in YSZ, and investigate the thermal stability of the thin oxide films. Up to about 0.8 ML of Ni deposited at room temperature was oxidized to NiO at a constant rate at 650 K via the substrate, whereas at slightly higher coverage, the oxidation rate under identical conditions was drastically reduced. In contrast to Ni, up to 4.8 ML of Cr deposited at 275 K could be oxidized via the substrate to Cr2O3 upon extensive UHV annealing at increasing temperature up to 820 K, indicating a reactive oxygen content of at least 4 x 10(-6) with respect to the lattice oxygen in the YSZ specimen. The Cr2O3 decomposed to metallic Cr above about 800 K, whereas NiO was stable up to the maximum temperature of 875 K. These results indicate that the oxidation via the substrate is kinetically analogous to the gas-phase oxidation of bulk Ni and Cr. The reactive oxygen content of the single-crystal YSZ is larger than expected, and part of it is accommodated at the surface of the substrate. The thermal stability of the thin oxide films is determined by the oxygen exchange with YSZ and not by the respective bulk oxide thermodynamic decomposition temperature.  相似文献   

2.
借助质谱 程序升温表面反应(MS TPSR)技术研究了NiO/悛睞l2O3、700 ℃ H2还原 后的Ni0/悛睞l2O3和添加Pt的NiO/悛睞l2O3催化剂(分别记为NiO、Ni0和Pt NiO)上甲烷 部分氧化反应(POM)的引发行为.结果表明,在CH4+O2气氛下NiO和Ni0具有相同的引发行为 , Ni0在反应气氛下首先被氧化为NiO.在低于760 ℃时, CH4和O2在NiO上发生深度氧化反 应生成H2O和CO2,在770 ℃开始逐渐引发POM反应. Pt NiO在520 ℃左右就能引发POM反应 .在流化床反应器中Pt NiO催化剂500 ℃左右引发POM反应,并且具有与Ni0基本相同的反应 性能,因此添加Pt有利于氧化镍还原为Ni0,从而降低了POM反应的引发温度.  相似文献   

3.
We present a comparative study of NiWO4, NiO, and WO3 catalysts for simultaneous conversion of NO and CO. Samples were synthesized by reacting ammonium metatungstate and/or nickel nitrate at high temperature (773 K to 903 K) under an oxygen stream. Catalysts were characterized by X-ray diffraction, surface area measurements, energy dispersive spectroscopy and scanning electron microscopy. The catalytic reduction of NO by CO took place in the temperature range (523 to 973) K under highly reductive conditions (NO:CO= 1:5) over NiWO4NiO, and WO3, respectively. The 100 % NO conversion at GHSV of 11460 h-1 was achieved at 773 K over NiWO4 and at 848 K over NiO. The WO3 was deactivated at 898 K. However, in the range (523 to 723) K NiO was more active than NiWO4 and WO3 catalysts.  相似文献   

4.
Changes in the surface chemical state of a nearly equiatomic nickel–titanium (NiTi) alloy caused by immersion in aqueous solutions of HNO3 and H2SO4 as well as subsequent heating in air at 723 K were analyzed using X-ray photoelectron spectroscopy (XPS). An XPS analysis using angle-resolved technique and a mathematical deconvolution technique revealed that a passive layer formed in an ambient atmosphere contained TiO2 as a major state and Ni(OH)2 and NiO as minor states. The Ni(OH)2 on the alloy remained in the region even when heated in air at 723 K. Therefore, the resulting layer became a Ti-oxide layer with Ni segregated region at the surface, which was NiO formed via dehydration of Ni(OH)2. However, immersion in an aqueous solution of HNO3 or H2SO4 enables Ni(OH)2 state to dissolve in the passive layer of a NiTi alloy; thereby, the Ni segregated region rarely appeared in the oxide layer by heating. The Ni segregated region at the surface becomes an obstacle for the inward diffusion of oxygen; thus, the annihilation of such a segregated region results in an increase in the thickness of the oxide layer.  相似文献   

5.
The adsorption of water molecules on an oxygen-predosed p(2x2)-Ni(111)-O surface was studied by surface x-ray diffraction and infrared reflection absorption spectroscopy (IRAS) at temperature of 25 and 140 K. Precise structures including adsorbed water, predosed oxygen, and substrate nickel atoms at these two temperatures were determined by x-ray structural analysis. It was found that water molecules adsorb on oxygen additive sites, forming a hydrogen bond at 25 K. A predosed 2x2 oxygen atom appears to accommodate one, two, or three water molecules at positions relating to threefold rotation symmetry. When the surface temperature was raised to 140 K, water molecules appear at an atop site of Ni. The distance between Ni and the oxygen atoms of a monomer water molecule was found to be 0.2241(22) nm. The adsorbed water molecule induces buckling and a lateral shift of the substrate nickel. The IRAS results provided evidence regarding the existence of two distinct adsorption sites. Water molecules in the low-temperature phase exhibit bands from both hydrogen-bonded nuOD and free OD stretchings, while those in the high-temperature phase lie flat with a molecular plane parallel to the surface.  相似文献   

6.
甲烷催化部分氧化制合成气的反应机理   总被引:6,自引:0,他引:6  
借助脉冲反应、质谱-程序升温表面反应(MS-TPSR)等技术研究了Ni/α-Al2O3催化剂上甲烷催化部分氧化制合成气(POM)的反应机理.结果表明,NiO上CH4不能解离产生H2只有当NiO被CH4还原为Ni0后,CH4才能解高产生H2,Ni0是CH4活化和POM反应的活性相;POM反应机理遵循直接氧化机理,CH4和O2均在Ni0上活化,活化过程形成的Ni…C和Niδ…Oδ物种是反应历程中的关键物种,Niδ …Oδ物种高选择性地与CH4解离产生的碳物种Ni…C反应生成CO.  相似文献   

7.
锆基合金由于具有低的热中子吸收截面、良好的耐腐蚀性能和力学性能等优点,通常被用于水冷核反应堆中的核燃料包壳和其他结构材料。通过在合金中添加适量的Nb元素可以有效地降低锆合金的氧化速率和吸氢分数,从而改善锆合金的耐腐蚀性能。尽管对锆合金的耐腐蚀性能得到了广泛的认识,但关于其在接近真实氧化腐蚀条件下的原位研究一直是具有挑战性的课题。本工作中利用近常压X射线光电子能谱(NAP-XPS)原位研究了1.3 × 10-8 - 1.3 × 10-1 mbar (1 mbar = 100 Pa)连续分压下室温到623 K温度时两种锆基合金表面在水,氧中的初始氧化腐蚀行为。结果表明,未添加Nb和添加1%Nb的锆合金表面在初始氧化过程中锆元素都会由金属态向多种氧化态过渡。水蒸气环境下两种合金的氧化速率都要低于氧气环境。室温下无论水蒸气还是氧气环境两种合金的氧化速率都要比623 K高温情况下的慢。在623 K的氧气气氛下,未添加Nb的锆合金相较于添加1%Nb的锆合金更容易被氧化,Nb的添加一定程度上会降低氧物种的吸附能力。在室温下和623 K低水蒸气压力下,1%Nb锆合金氧化速率更快,Nb促进OH-在表面生成。而在623 K高水蒸气压力下,未添加Nb的锆合金有更易于被氧化的倾向,Nb在高温下向表面扩散并抑制OH-键的断裂,但两种样品表面短时间内都无法被完全氧化。  相似文献   

8.
Ba deposition on a theta-Al(2)O(3)/NiAl(100) substrate and its oxidation with gas-phase O(2) at various surface temperatures are investigated using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and temperature programmed desorption (TPD) techniques. Oxidation of metallic Ba by gas-phase O(2) at 800 K results in the growth of 2D and 3D BaO surface domains. Saturation of a metallic Ba layer deposited on theta-Al(2)O(3)/NiAl(100) with O(2)(g) at 300 K reveals the formation of BaO(2)-like surface states. These metastable peroxide (O(2)(2-)) states are converted to regular oxide (O(2-)) states at higher temperatures (800 K). In terms of thermal stability, BaO surface layers (theta(Ba) < 5 ML) that are formed by O(2)(g) assisted oxidation on the theta-Al(2)O(3)/NiAl(100) substrate are significantly more stable (with a desorption/decomposition temperature of c.a. 1050 K) than the thick (2 < theta(Ba) < 10 ML) metallic/partially oxidized Ba layers prepared in the absence of gas-phase O(2), whose multilayer desorption features appear as low as 700 K.  相似文献   

9.
Oxygen hydrogenation at 100 K by gas phase atomic hydrogen on Ni(110) has been studied under ultrahigh vacuum conditions by temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS). Formation of adsorbed water and hydroxyl species was observed and characterized. The coverage of the reaction products was monitored as a function of both temperature and initial oxygen precoverage. On the contrary, when high coverage oxygen overlayers were exposed to gas phase molecular hydrogen, no hydrogenation reaction took place. The results are compared to the inverse process, exposing the hydrogen covered surface to molecular oxygen. In this case, at 100 K, simple Langmuir-Hinshelwood modeling yields an initial sticking coefficient for oxygen adsorption equal to 0.26, considerably lower than for the clean surface. Moreover, formation of hydroxyl groups is found to be twice as fast as the final hydrogenation of OH groups to water. Assuming a preexponential factor of 10(13) s(-1), an activation barrier of 6.7 kcal/mol is obtained for OH formation, thus confirming the high hydrogenating activity of nickel with respect to other transition metals, for which higher activation energies are reported. However, oxygen is hardly removed by hydrogen on nickel: this is explained on the basis of the strong Ni-O chemical bond. The hydrogen residual coverage is well described including a contribution from the adsorption-induced H desorption process which takes place during the oxygen uptake and which is clearly visible from the TPD data.  相似文献   

10.
Using high resolution S 2p and O 1s x-ray photoelectron spectroscopies, the adsorption of SO2 and its surface bound reaction products on Ru(0001) have been investigated simultaneously while dosing SO2 and while heating the adsorbed species. SO2 is found to adsorb on Ru(0001) at 100 K molecularly in two variants as well as dissociatively and to react to SO3, SO4, SO, and S with increasing coverage. After the monolayer has been saturated, SO2 adsorbs molecularly in multilayers. When heating adsorbed SO2 from 100 K, SO, SO2, and SO4 decompose in a wide temperature range up to 305 K. In contrast SO3 is found to be stable bound to Ru(0001) up to 300 K and to disappear from the surface to below 325 K. At 550 K the surface remains with a saturated atomic sulfur and oxygen layer and some sulfur species in a second layer. Our quantitative analysis of the sulfur amount bound to the surface supports a simple desorption process only for SO4. All other species mainly or partly decompose on the surface.  相似文献   

11.
考察了焙烧温度对 Ni/MgO 催化剂结构及其在甲苯二氧化碳重整反应中催化性能的影响. 由于 NiO-MgO 固溶体的形成,样品的 X 射线衍射谱中没有出现明显的 NiO 衍射峰, 而在拉曼光谱中出现明显的散射信号. X 射线光电子能谱、氢气程序升温还原和 H2脉冲吸附结果表明, 高温焙烧过程中 Ni 向催化剂体相扩散, 与 MgO 发生强互相互作用, 使得 Ni 物种难以还原,但部分位于催化剂表面的 Ni 物种能够还原; 高温焙烧后催化剂表面活性 Ni 物种明显减少, 致使催化剂重整活性降低. 重整反应后, 催化剂表面存在少量多核芳烃类积炭, 这很可能是高温焙烧催化剂稳定性差的原因.  相似文献   

12.
NiO nanoparticles were prepared by means of sol-gel method via varying the ratio of citric acid to nickel nitrate. The samples were characterized by powder X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). It was found that the molar ratio of citric acid to nickel nitrate has a great effect on the crystal structure and particle size of NiO. The increase of the molar ratio of citric acid to nickel nitrate is favorable to the formation of NiO smaller particles within the range tested. Compared to bulk NiO obtained by thermal decomposition, NiO nanoparticles possess more surface oxygen species O-. The activity test indicates that surface oxygen species O- plays a crucial role in the hydroxylation of benzene to phenol with hydrogen peroxide as oxidant. The active site may be originated from Ni2+ on the surface of the samples, while Ni0 does not contribute to the hydroxylation reaction.  相似文献   

13.
The electronic structures of NiO, LiNiO2, and NiO2 are studied by the electron energy loss spectroscopy at Ni L(2,3), Ni M(2,3), and O K edges. The Ni L(2,3) edge spectra suggest that the formal charge of nickel is +2 in NiO, +3 with a low-spin state in LiNiO2, and +4 with a low-spin state in NiO2. This is well confirmed by first-principles calculations. The Ni M(2,3) edge spectra show similar chemical shifts to those of the Ni L(2,3) edge. Superposition of the Li K edge spectrum, however, hinders further analysis. Although the formal charge of oxygen is -2 in all the three phases, the O K edge spectra indicate a more remarkable difference in the electronic structure of the oxygen in NiO2 than that in either NiO or LiNiO2. The spectra suggest that lithium extraction from LiNiO2 reinforces the covalent bonding between the oxygen and nickel atoms and causes a notable reduction in electron density at the oxygen atoms.  相似文献   

14.
Nickel oxide films were prepared by chemical deposition on glass substrates using nickel sulphate and potassium persulphate in ammonia solution. Coatings dried in air and at 85°C were characterized by thermal analysis (TG and DTG), FT-IR spectroscopy and X-ray diffraction. The films could be formulated as hydrated forms of 4Ni(OH)2·NiOOH and Ni3O2(OH)4 respectively. The coatings lost water and oxygen on heating to give NiO.  相似文献   

15.
The results of investigations of the RuNi catalysts, which are designed for the electrooxidation of methanol and other low-molecular-weight alcohols in alkaline solutions, are presented. It is shown that the maximum catalytic activity in this reaction is exhibited by a catalyst, which was synthesized thermochemically on acetylene black AD100 containing 15 wt % RuNi at a 68 : 32 atomic ratio (in at. %) between the metals. The structure of the synthesized catalysts is studied by the methods of x-ray photoelectron spectroscopy and x-ray diffraction analysis (XRDA). The area of the metal surface is determined on the basis of the magnitude of the adsorption of CO from the voltammetric curves. An analysis of the data obtained in this work leads to the conclusion that ruthenium in the composition of the catalyst exists in metallic and partially oxidized states and nickel exists in the form of a nonstoichiometric oxide. In addition it is found that the insertion of nickel into the system leads, as follows from the XRDA data, to the dispersion of ruthenium and, as follows from the voltammetric curves, to a decrease in the specific surface area accessible to the adsorption of CO. This is probably connected with the decoration and blockade of a portion of the ruthenium surface by some nickel oxides. Data on the influence, which is exerted by the concentration of methanol, alkali, and temperature on the electrocatalytic activity of the AD100 + 15 wt % RuNi catalyst at a 68 : 32 atomic ratio (in at. %) between the components, are presented. Rates of the oxidation of methanol, ethanol, n-butanol, and ethylene glycol in identical conditions on the catalyst AD100 + 15 wt % RuNi (68 : 32 at. %) between the metals are compared with one another. The oxidation currents, which are observed at a potential of 0.3 V, are equal to 5.48, 2.67, 0.48, and 0.47 A per gram of the catalyst for ethanol, ethylene glycol, methanol, and n-butanol, respectively.__________Translated from Elektrokhimiya, Vol. 41, No. 7, 2005, pp. 829–839.Original Russian Text Copyright © 2005 by Tarasevich, Karichev, Bogdanovskaya, Kapustin, Lubnin, Osina.  相似文献   

16.
Oxidation behavior of NiAl alloy at low temperatures was studied. A NiAl plate was oxidized by exposure to ambient atmosphere at room temperature, heated at 473 K in air, and heated at 773 K in air. The oxide formed on the NiAl surface was investigated by angle‐resolved X‐ray photoelectron spectroscopy (AR‐XPS). Chemical composition and atomic concentration in the oxide layer were analyzed with factor analysis of XPS spectra. Exposure of the NiAl plate to the ambient atmosphere resulted in the formation of an Al2O3 layer along with a small amount of NiO. Oxidation of the NiAl plate at 473 K in air formed a film of double‐layered oxide; the top layer consisted of NiAl2O4 and a small amount of NiO, and the second layer was Al2O3. Successive oxidation at 773 K only changed the oxide‐layer thickness without changing the structure. Formation of oxide observed in the present study corresponds to the thermodynamic prediction for the oxidation behavior of NiAl at 1373 K. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Periodically stepped NiO(100) surfaces were prepared and characterized with low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). Two vicinal NiO(100) single-crystal samples were cut, oriented, and polished with regular, repeating monatomic steps in six-atom or seven-atom terrace widths. LEED diffraction patterns showed characteristic spot-splitting that corresponded to the appropriate terrace and step height. The nonstepped and stepped NiO(100) surfaces were exposed to bromobenzene at 130 K first to produce a molecularly adsorbed monolayer species and then, with increased exposure, a multilayer adsorbate. An additional adsorbate species, observed only on the stepped surfaces, was found to desorb at 145 K by two competing pathways. One pathway, which saturates at low coverages, leaves bromine behind on the substrate and results in dehalogenation. The other pathway yields molecular desorption at 145 K, but is only observed in detectable amounts after the dehalogenation pathway is saturated. On both stepped and nonstepped NiO(100) substrates, adsorbed bromine resulting from dehalogenation processes appears as nickel bromide, determined by the Br 3p XPS data.  相似文献   

18.
The interaction of oxygen with a carburized Mo(100) surface was investigated at different temperatures (300-1000 K). The different information depths of low-energy ion-scattering (LEIS) spectroscopy, with topmost layer sensitivity, Auger electron spectroscopy (AES), and angle-resolved X-ray photoelectron spectroscopy (ARXPS) allowed us to discriminate between reactions on the topmost layer and subsurface transformations. According to ARXPS measurements, a carbide overlayer was prepared by the high-temperature decomposition of C(2)H(4) on Mo(100), and the carbon distribution proved to be homogeneous with a Mo(2)C stoichiometry down to the information depth of XPS. O(2) adsorbs dissociatively on the carbide layer at room temperature. One part of the chemisorbed oxygen is bound to both C and Mo sites, indicated by LEIS. Another fraction of oxygen atoms probably resides in the hollow sites not occupied by C. The removal of C from the outermost layer by O(2), in the form of CO, detected by mass spectroscopy (MS), was observed at 500-600 K. The carbon-depleted first layer is able to adsorb more oxygen compared to the Mo(2)C/Mo(100) surface. Applying higher doses of O(2) at 800 K results in the inward diffusion of O and the partial oxidation of Mo atoms. This process, however, is not accompanied by the removal of C from subsurface sites. The depletion of C from the bulk starts only at 900 K (as shown by MS, AES, and XPS), very probably by the diffusion of C to the surface followed by its reaction with oxygen. At T(ads) = 1000 K, the carbon content of the sample, down to the information depth of XPS, decreased further, accompanied by the attenuation of the C concentration gradient and a substantially decreased amount of oxygen.  相似文献   

19.
Needle-like particles (maximum length, approximately 2 μm) of nickel basic sulfate (Ni(OH)(1.4)(SO(4))(0.3)) were prepared by forced hydrolysis at 100 degrees C for 2 days of aqueous solutions containing nickel(II) nitrate, nickel(II) sulfate, and sodium acetate in the appropriated concentrations. The needles were characterized in terms of their composition, crystal structure, and electrokinetic behavior. Their structural and compositional evolutions with temperature were also studied. It was found that a dehydroxylation process took place on heating at 500 degrees C after which the particles consisted of a mixture of crystalline NiO and an amorphous nickel sulfate. This compound decomposed at a higher temperature (800 degrees C) yielding NiO. The particles lost the needle-like shape after calcination at 500 degrees C. Copyright 2000 Academic Press.  相似文献   

20.
The XPS (X-ray photoelectron spectroscopy) study of nickel oxide nanolayers obtained by magnetron sputtering of the metal and its subsequent oxidation in air at different temperatures (400°C and 1000°C) was performed. Silicon(100) was used as a substrate. Surface of the initial Ni/Si structure was shown to contain not only Ni metal, but also the NiO oxide. Annealing at 400°C results in a complete oxidation of the metal film. At a high-temperature annealing (1000°C), nickel interacts both with oxygen and silicon substrate to form NiSi silicide and a composite Ni-Si-O phase in transition layer. Electronconductivity of NiO films is determined by intercrystallite barriers. Activation energies of film electroconductivity in model gases (O2, Ar, H2) were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号