首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of the Howard-Busse method of the optimum theory of turbulence we obtain upper bounds on the convective heat transport in a horizontal fluid layer heated from below and rotating about a vertical axis. We consider the interval of large Taylor numbers where the intermediate layers of the optimum fields expand in the direction of the corresponding internal layers. We consider the 1 - α-solution of the arising variational problem for the cases of rigid-stress-free, stress-free, and rigid boundary conditions. For each kind of boundary condition we discuss four cases: two cases where the boundary layers are thinner than the Ekman layers of the optimum field and two cases where the boundary layers are thicker than the Ekman layers. In most cases we use an improved solution of the Euler-Lagrange equations of the variational problem for the intermediate layers of the optimum fields. This solution leads to corrections of the thicknesses of the boundary layers of the optimum fields and to lower upper bounds on the convective heat transport in comparison to the bounds obtained by Chan [J. Fluid Mech. 64, 477 (1974)] and Hunter and Riahi [J. Fluid Mech. 72, 433 (1975)]. Compared to the existing experimental data for the case of a fluid layer with rigid boundaries the corresponding upper bounds on the convective heat transport is less than two times larger than the experimental results, the corresponding upper bound on the convective heat transport, obtained by Hunter and Riahi is about 10% higher than the bound obtained in this article. When Rayleigh number and Taylor number are high enough the upper bound on the convective heat transport ceases to depend on the boundary conditions. Received 30 January 2001 and Received in final form 28 May 2001  相似文献   

2.
We study the scaling properties of heat transfer Nu in turbulent thermal convection at large Prandtl number Pr using a quasi-linear theory. We show that two regimes arise, depending on the Reynolds number Re. At low Reynolds number, NuPr -1/2 and Re are a function of RaPr -3/2. At large Reynolds number NuPr 1/3 and RePr are function only of RaPr 2/3 (within logarithmic corrections). In practice, since Nu is always close to Ra 1/3, this corresponds to a much weaker dependence of the heat transfer in the Prandtl number at low Reynolds number than at large Reynolds number. This difference may solve an existing controversy between measurements in SF6 (large Re) and in alcohol/water (lower Re). We link these regimes with a possible global bifurcation in the turbulent mean flow. We further show how a scaling theory could be used to describe these two regimes through a single universal function. This function presents a bimodal character for intermediate range of Reynolds number. We explain this bimodality in term of two dissipation regimes, one in which fluctuation dominate, and one in which mean flow dominates. Altogether, our results provide a six parameters fit of the curve Nu(Ra, Pr) which may be used to describe all measurements at Pr≥0.7. Received 27 February 2002 / Received in final form 29 May 2002 Published online 31 July 2002  相似文献   

3.
We obtain an upper bound on the convective heat transport in a heated from below horizontal fluid layer of infinite Prandtl number with rigid lower boundary and stress-free upper boundary. Because of the asymmetric boundary conditions the solutions of the Euler-Lagrange equations of the corresponding variational problem are also asymmetric with different thicknesses of the boundary layers on the upper and lower boundary of the fluid. The obtained bound on the convective heat transport and the corresponding wave number are between the values for a fluid layer with two rigid boundaries and a fluid layer with two stress-free boundaries.  相似文献   

4.
We have studied the dynamics of the contact line of a viscous liquid on a solid substrate with macroscopic random defects. We have first characterized the friction force f0 at microscopic scale for a substrate without defects; f0 is found to be a strongly nonlinear function of the velocity U of the contact line. In presence of macroscopic defects, we find that the applied force F(U) is simply shifted with respect to f0(U) by a constant: we do not observe any critical behavior at the depinning transition. The only observable effect of the substrate disorder is to increase the hysteresis. We have also performed realistic numerical simulation of the motion of the contact line. Using the same values of the parameters as in the experiment, we find that the experimental data is qualitatively well reproduced. In light of experimental and numerical results, we discuss the possibility of measuring a true critical behavior.Received: 6 October 2003, Published online: 19 February 2004PACS: 46.65. + g Random phenomena and media - 64.60.Ht Dynamic critical phenomena - 68.08.Bc Wetting  相似文献   

5.
We generalize an analogy between rotating and stratified shear flows. This analogy is summarized in Table 1. We use this analogy in the unstable case (centrifugally unstable flow vs. convection) to compute the torque in Taylor-Couette configuration, as a function of the Reynolds number. At low Reynolds numbers, when most of the dissipation comes from the mean flow, we predict that the non-dimensional torque G = T2 L, where L is the cylinder length, scales with Reynolds number R and gap width η, G = 1.46η3/2(1 - η)-7/4 R 3/2. At larger Reynolds number, velocity fluctuations become non-negligible in the dissipation. In these regimes, there is no exact power law dependence the torque versus Reynolds. Instead, we obtain logarithmic corrections to the classical ultra-hard (exponent 2) regimes: G = 0.50 . These predictions are found to be in excellent agreement with avail-able experimental data. Predictions for scaling of velocity fluctuations are also provided. Received 7 June 2001 and Received in final form 7 December 2001  相似文献   

6.
We report an experimental study of large scale correlations in the power injected in turbulent swirling flows generated in the gap between two coaxial rotating disks. We measure the pressure fluctuations on the blades of one disk, as well as the pressure drop between the leading and the trailing edges of the rotating blades, i.e. the local drag force. Measurements at different positions on one blade and on two successive blades display a correlation length much larger than the ones usually expected in turbulent flows. The time lag for which the correlation between two points is maximum, strongly depends on the global flow configuration. These results help us to understand the statistical properties of the injected power fluctuations in turbulent swirling flows. Received 2 September 1999  相似文献   

7.
The velocity increments statistic in various turbulent flows is analysed through the hypothesis that different scales are linked by a multiplicative process, of which multiplier is infinitely divisible. This generalisation of the Kolmogorov-Obukhov theory is compatible with the finite Reynolds number value of real flows, thus ensuring safe extrapolation to the infinite Reynolds limit. It exhibits a estimator universally depending on the Reynolds number of the flow, with the same law either for Direct Numerical Simulations or experiments, both for transverse and longitudinal increments. As an application of this result, the inverse dependence is used to define an unbiased value for a Large Eddy Simulation from the resolved scales velocity statistics. However, the exact shape of the multiplicative process, though independent of the Reynolds number for a given experimental setup, is found to depend significantly on this setup and on the nature of the increment, longitudinal or transverse. The asymmetry of longitudinal velocity increments probability density functions exhibits similarly a dependence with the experimental setup, but also systematically depends on the Reynolds number. Received 7 January 2000 and Received in final form 17 March 2000  相似文献   

8.
The aim of this paper is to show the effect of secondary flows caused by natural convection on the laminar-turbulent hydrodynamic transition. It is not a question of measuring a critical threshold value of Reynolds number of transition but only to estimate the degree of turbulence in the transition regime, i.e. weak turbulence in the case of superposition (mixed convection) or not (forced convection) of secondary flows on the forced flow. This is possible thanks to the application of the wavelet transform. The calculation of the H?lder exponent, associated with the maximum value of the singularity spectrum for two configurations, vertical (forced convection) and horizontal (mixed convection) allows the degree of turbulence to be measured in both cases. The variation of the H?lder exponent versus the Reynolds number has enabled it to be shown that the secondary flows stabilise the main flow and stifle the beginnings of the turbulence during the regime of transition to turbulence; these kinds of results have also been shown in literature. Generally, large-sized secondary flows (for example Dean's flows) stabilise the turbulence. Our work confirms this, through an experiment carried out in identical conditions for mixed convection (horizontal flow) and forced convection (vertical flow). Received 30 March 1998 and Received in final form 28 April 1999  相似文献   

9.
To demonstrate essentials of the mechanism for the onset of turbulence in a pipe at Re=2000, 48 degrees of freedom are enough. The derivation from the Navier-Stokes equation uses a novel type of modes which guarantee linear stability. For the reduction of the nonlinear interactions, the modes are grouped in 3 blocks. Facilitated by these simplifications the interdependence between linear and nonlinear processes is analysed, however, just for a special example. A phenomenon resembling backflow is identified. Received 20 October 1997  相似文献   

10.
Universality of statistical properties of passive quantities advected by turbulent velocity fields at changing the passive forcing mechanism is discussed. In particular, we concentrate on the statistical properties of an hydrodynamic system with pressure. We present theoretical arguments and preliminary numerical results which show that the fluxes of passive vector field and of the velocity field have the same scaling behavior. By exploiting such a property, we propose a way to compute the anomalous exponents of three dimensional turbulent velocity fields. Our findings are in agreement within 5% with experimental values of the anomalous exponents. Received 4 July 2001  相似文献   

11.
We interpret measurements of the Reynolds number dependence of the torque in Taylor-Couette flow by Lewis and Swinney [Phys. Rev. E 59, 5457 (1999)] and of the pressure drop in pipe flow by Smits and Zagarola [Phys. Fluids 10, 1045 (1998)] within the scaling theory of Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)], developed in the context of thermal convection. The main idea is to split the energy dissipation into contributions from a boundary layer and the turbulent bulk. This ansatz can account for the observed scaling in both cases if it is assumed that the internal wind velocity introduced through the rotational or pressure forcing is related to the external (imposed) velocity U, by with and for the Taylor-Couette (U inner cylinder velocity) and pipe flow (U mean flow velocity) case, respectively. In contrast to the Rayleigh-Bénard case the scaling exponents cannot (yet) be derived from the dynamical equations. Received 9 September 2000  相似文献   

12.
Statistical analysis of the transition to turbulence in plane Couette flow   总被引:1,自引:0,他引:1  
We argue on general grounds that the transition to turbulence in plane Couette flow is best studied experimentally at a statistical level. We present such a statistical analysis of experimental data guided by a parallel investigation of a simple coupled map lattice model for spatiotemporal intermittency. We confirm that this generic type of spatiotemporal chaos is relevant in the context of plane Couette flow, where the linear stability of the laminar regime at all Reynolds numbers insures the necessary local subcriticality. Using large ensembles of similar experiments, we show the existence of a well-defined threshold Reynolds number above which a unique, turbulent, intermittent attractor coexists with the laminar flow. Furthermore, our data reveals that this transition to spatiotemporal intermittency is discontinuous, i.e. akin to a first-order phase transition. Received: 10 April 1998 / Revised: 22 June 1998 / Accepted: 24 June 1998  相似文献   

13.
The primary stationary and oscillatory Bénard-Marangoni instability is investigated in a fluid layer of infinite horizontal extent, bounded below by a rigid plane and above by a deformable upper surface, subjected to a vertical temperature gradient. Since the viscosity is temperature-dependent the consequences of relaxing Oberbeck-Boussinesq approximation and free surface deformability are theoretically examined by means of small disturbance analysis. The problem has been solved numerically by the Taylor series expansion method. The results obtained confirm that when the free surface is undeformable, stationary convection develops in the form of polygonal cells, and oscillatory motion cannot be detected. When the surface deformability is considered, stationary convection sets in, either as a short-wavelength hexagonal instability or as a long-wavelengh mode or as both, and oscillatory convection is also possible. The stability threshold for the short-wavelength mode depends mainly on the viscosity variation while the long-wavelength mode is determined by the surface deformation. Numerically, it is found that the neutral oscillatory Marangoni numbers are only negative. When a variable-viscosity model is used the theoretical and experimental results are in better agreement. Received 15 May 1997  相似文献   

14.
We study numerically the dependence of heat transport on the maximum velocity and shear rate of physical circulating flows, which are prescribed to have the key characteristics of the large-scale mean flow observed in turbulent convection. When the side-boundary thermal layer is thinner than the viscous boundary layer, the Nusselt number (Nu), which measures the heat transport, scales with the normalized shear rate to an exponent 1/3. On the other hand, when the side-boundary thermal layer is thicker, the dependence of Nu on the Peclet number, which measures the maximum velocity, or the normalized shear rate when the viscous boundary layer thickness is fixed, is generally not a power law. Scaling behavior is obtained only in an asymptotic regime. The relevance of our results to the problem of heat transport in turbulent convection is also discussed. Received 28 November 2001 Published online 25 June 2002  相似文献   

15.
In this work, we study the problem of onset of thermal convection in a rotating saturated porous medium heated from below. The effect of rotation is restricted to the Coriolis force, neglecting thus the centrifugal effects, the porous medium is described by Brinkman's model. The linear eigenvalue problem is solved by means of a modified Galerkin method. The behavior of the critical temperature gradient is discussed in terms of various parameters of the system for both stationary and overstable convections. Finally a weakly nonlinear analysis is provided to derive amplitude equations and to study the onset of Küppers-Lortz instability. Received 24 June 2002 / Received in final form 11 September 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: tdesaive@ulg.ac.be  相似文献   

16.
Spiral turbulence observed in Couette-Taylor system has been characterized using the phase diffusion equation suggested by Hegseth et al. [Phys. Rev. Lett. 62, 257 (1989)]. From space-time diagrams, we have measured the diffusion coefficient, the diffusion velocity, and the turbulent spiral pitch.  相似文献   

17.
An analysis based on the available experimental data and second-order closures is made for a turbulent shear flow over a rotating cylinder in a quiescent fluid. The near-wall behaviour of the non-linear model for the pressure-strain correlation proposed by Speziale, Sarkar and Gatski [J. Fluid Mech. 245, 227 (1991)] is enlarged; and the methodology proposed by Lai and So [J. Fluid Mech. 221, 641 (1990)] is adopted to take into account the wall-effects. The radial profile of the curvature parameter, Rs, is examined in connection with the logarithmic law. It is shown that the log-layer is associated to the region where the mean velocity profile, V, is related to the power of the radial distance as Computations reveal that this region corresponds to the state with the most destabilizing curvature effects; which can be chararacterized by the minimum value of the parameter B c =2R s (1+2R s ), and not that one of the parameter B=2R s (1+2R s )/(1+R s )2 firstly introduced by Bradshaw [J. Fluid Mech. 36, 171 (1969)] and extensively used to characterize the turbulence structure in curved flows. Received 9 December 1997  相似文献   

18.
We show that a recently proposed [J. Fleischer, P.H. Diamond, Phys. Rev. E 58, R2709 (1998)] one-dimensional Burgers-like model for magnetohydrodynamics (MHD) is in effect identical to existing models for drifting lines and sedimenting lattices. We use the model to demonstrate, contrary to claims in the literature, that the energy spectrum of MHD turbulence should be independent of mean magnetic field and that cross-correlations between the noise sources for the velocity and magnetic fields cannot change the structure of the equations under renormalisation. We comment on the scaling and the multiscaling properties of the stochastically forced version of the model. Received 29 October 1998 and Received in final form 8 December 1998  相似文献   

19.
The role of thermodiffusive generation of concentration fluctuations via the Soret effect, their contribution to the buoyancy forces that drive convection, the advective mixing effect of the latter, and the diffusive homogenisation are compared and elucidated for oscillatory convection. Numerically obtained solutions of the field equations in the form of spatially extended relaxed traveling waves, of standing waves, and of the transient growth of standing waves and their transition to traveling waves are discussed as well as spatially localized convective states of traveling waves that are surrounded by the quiescent fluid.  相似文献   

20.
The Eckhaus stability boundaries of travelling periodic roll patterns arising in binary fluid convection is analysed using high-resolution numerical methods. We present results corresponding to three different values of the separation ratio used in experiments. Our results show that the subcritical branches of travelling waves bifurcating at the onset of convection suffer sideband instabilities that are restabilised further away in the branch. If this restabilisation is produced after the turning point of the travelling-wave branch, these waves do not become stable in a saddle node bifurcation as would have been the case in a smaller domain. In the regions of instability of the uniform travelling waves we expect to find either transitions between states of different wave number or modulated travelling waves arising in these bifurcations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号