首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoregulated polymerizations are typically conducted using high‐energy (UV and blue) light, which may lead to undesired side reactions. Furthermore, as the penetration of visible light is rather limited, the range of applications with such wavelengths is likewise limited. We herein report the first living radical polymerization that can be activated and deactivated by irradiation with near‐infrared (NIR) and far‐red light. Bacteriochlorophyll a (Bachl a) was employed as a photoredox catalyst for photoinduced electron transfer/reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization. Well‐defined polymers were thus synthesized within a few hours under NIR (λ=850 nm) and far‐red (λ=780 nm) irradiation with excellent control over the molecular weight (Mn/Mw<1.25). Taking advantage of the good penetration of NIR light, we showed that the polymerization also proceeded smoothly when a translucent barrier was placed between light source and reaction vessel.  相似文献   

2.
The inferior utilization efficiency of light is the main obstacle to the practical application of traditional photocatalysts such as TiO2 and ZnO. In this regard, the development of novel photocatalysts with the capability of harvesting full spectrum light (from ultraviolet (UV) to near-infrared (NIR)) energy is a promising solution for solar energy conversion and environmental remediation. Here, we report the discovery of a single material that can harvest UV, visible (VIS), and NIR radiations to decompose heavy metal contaminants in aqueous solution. Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons were synthesized through a facile solution approach and employed in the reduction of Cr(VI) under UV−VIS−NIR pulsed laser irradiation, which was generated from the fundamental, second and third harmonics of Nd:YAG laser, respectively. The nanostructures showed efficient Cr(VI) reduction under UV, VIS and NIR laser irradiation and the measured reduction efficiency (%) was 71.22%, 69.52%, and 40.79%, respectively after 120 min. A possible explanation for the photocatalytic activity in Cr(VI) reduction was proposed. This is the first study of its kind where pulsed laser and ZIF-67 rhombic dodecahedrons capable of harvesting full spectrum light energy have been employed for the removal of Cr(VI) from water. The extraordinary capacity of harvesting full-spectrum light and long-term stability make ZIF-67 a potential photocatalyst for environmental remediation.  相似文献   

3.
Photo-responsive liquid crystalline elastomer (LCE) with reduced chemically modified graphene oxide (RMGO) was fabricated and studied. Mesogenic groups modified graphene oxide (MGO) was prepared, reduced and characterised, then the obtained RMGO was mixed with an acrylate monomer containing a side-on mesogen, a crosslinker and a photoinitiator. After being oriented with magnetic field, well-defined LCE micropillar as photo-responsive actuators were fabricated from the mixture by the method combining soft lithography and photo-polymerisation/photo-crosslinking. The LCE micropillars showed reversible thermo-mechanical deformation during the nematic-to-isotropic transition temperature. Upon irradiating with red light (650 nm), photo-mechanical responses of the RMGO-containing LCE was demonstrated. This micron-sized LCE actuators can be used for remote photo-responsive devices.  相似文献   

4.
Liquid crystal elastomers (LCEs) with intrinsic anisotropic strains are reversible shape‐memory polymers of interest in sensor, actuator, and soft robotics applications. Rapid gelation of LCEs is required to fix molecular ordering within the elastomer network, which is essential for directed shape transformation. A highly efficient photo‐cross‐linking chemistry, based on two‐step oxygen‐mediated thiol–acrylate click reactions, allows for nearly instant gelation of the main‐chain LCE network upon exposure to UV light. Molecular orientation from the pre‐aligned liquid crystal oligomers can be faithfully transferred to the LCE films, allowing for preprogrammed shape morphing from two to three dimensions by origami‐ (folding‐only) and kirigami‐like (folding with cutting) mechanisms. The new LCE chemistry also enables widely tunable physical properties, including nematic‐to‐ isotropic phase‐transition temperatures (TN‐I), glassy transition temperatures (Tg), and mechanical strains, without disrupting the LC ordering.  相似文献   

5.
The local heating of poly(3,4‐ethylenedioxythiophene) (PEDOT) by a photothermal effect directed by near‐infrared (NIR) light induces unfolding of absorbed collagen triple helices, yielding soluble collagen single‐helical structures. This dissociation of collagens allowed the harvesting of a living idiomorphic cell sheet, achieved upon irradiation with NIR light (λ=808 nm). The PEDOT layer was patterned and cells were successfully cultured on the patterned substrate. Cell sheets of various shapes mirroring the PEDOT pattern could be detached after a few minutes of irradiation with NIR light. The PEDOT patterns guided not only the entire shape of the cell sheets but also the spreading direction of the cells in the sheets. This photothermally induced dissociation of collagen provided a fast non‐invasive harvesting method and tailor‐made cell‐sheet patterns.  相似文献   

6.
Vacancy‐rich layered materials with good electron‐transfer property are of great interest. Herein, a full‐spectrum responsive vacancy‐rich monolayer BiO2?x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO2?x is responsible for the enhanced photon response and photo‐absorption, which were confirmed by UV/Vis‐NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO2?x, monolayer BiO2?x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near‐infrared light (NIR) irradiation, which can be attributed to the vacancy VBi‐O′′′ as confirmed by the positron annihilation spectra. The presence of VBi‐O′′′ defects in monolayer BiO2?x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.  相似文献   

7.
Vacancy‐rich layered materials with good electron‐transfer property are of great interest. Herein, a full‐spectrum responsive vacancy‐rich monolayer BiO2−x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO2−x is responsible for the enhanced photon response and photo‐absorption, which were confirmed by UV/Vis‐NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO2−x, monolayer BiO2−x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near‐infrared light (NIR) irradiation, which can be attributed to the vacancy VBi‐O′′′ as confirmed by the positron annihilation spectra. The presence of VBi‐O′′′ defects in monolayer BiO2−x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.  相似文献   

8.
Engineering of molecular stacking arrangement via environmental stimuli is of particular interest in stimuli‐responsive self‐assembling architectures. A novel dual photo‐functionalized diacetylene ((Z)‐CNBE‐DA) molecule was synthesized, in which photo‐responsive cyanostilbene moieties exhibited interesting Z‐E isomerization upon UV light irradiation and could be utilized to modulate mesomorphism, molecular stacking arrangement and resulting polymerization behavior. Rod‐like (Z)‐CNBE‐DA could self‐assemble into well‐defined lamellar structures and the helical polydiacetylene (PDA) chains could be formed upon irradiation with circularly polarized ultraviolet light (CPUL). However, the bent‐shaped (E)‐CNBE‐DA molecules only self‐assembled into irregular loose packing, inhibiting the formation of ordered helical PDA chains upon CPUL irradiation. In this work, we established the links between chemical structures, molecular packing engineering and photophysical properties, which would be of great fundamental value for the rational design of smart soft materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2458–2466  相似文献   

9.
Stimuli-responsive drug delivery systems (DDS) may overcome the drawbacks of conventional chemotherapy for cancer treatment. In particular, light-responsive polymer-based DDS may ensure spatio and temporal control in drug delivery. In this regard, near infrared (NIR) light triggered drug nanocarriers present several advantages when compared to UV–visible light triggered nanocarriers. This review surveys the recent development on the design, synthesis, functions, and applications of NIR photo-sensitive compounds in the development of long-wavelength light-responsive nanocarriers. Diverse NIR light responsive groups such as coumarin (CM), ortho-nitrobenzyl (ONB), 2-diazo-1,2-naphthoquinone (DNQ) and spiropyran (SP) derivatives and their photo-cleavage reaction mechanisms are discussed, as well as the use of indocyanine green (ICG) and its photo-thermal application. The loading into polymeric nanocarriers of up converting nanoparticles (UCNPs) which can convert NIR light into UV or visible light is also discussed. The described DDS are classified on the basis on the photo responsive groups. In details, the behavior of different polymeric materials such as micelles, hydrogels bearing photo responsive groups linked to bioactive molecules which are released under NIR light irradiation is reviewed and discussed. A section relative to commonly used instrument setup for drug release studies by NIR light irradiation is also presented for better understanding how the light has been used to irradiate in various experimental situations.  相似文献   

10.
Liquid-crystal elastomers (LCEs) capable of performing large and reversible deformation in response to an external stimulus are an important class of soft actuators. However, their manufacturing process typically involves a multistep approach that requires harsh conditions. For the very first time, LCEs with customized geometries that can be manufactured by a rapid one-step approach at room temperature are developed. The LCEs are hydrogen bond (H-bond) crosslinked main chain polymers comprising flexible short side chains. Applying a stretching/shear force to the LCE can simultaneously induce mesogen alignment and H-bond exchange, allowing for the formation of well-aligned LCE networks stabilized by H-bonds. Based on this working principle, soft actuators in fibers and 2D/3D objects can be manufactured by mechanical stretching or melt extrusion within a short time (e.g. <1 min). These actuators can perform reversible macroscopic motions with large, controlled deformations up to 38 %. The dynamic nature of H-bonds also provides the actuators with reprocessability and reprogrammability. Thus, this work opens the way for the one-step and custom manufacturing of soft actuators.  相似文献   

11.
Jump is an important form of motion that enables animals to escape from predators, increase their range of activities, and better adapt to the environment. Inspired by springtails, we describe a light-driven soft jumping robot based on a double-folded liquid crystal elastomer (LCE) ribbon actuator with a monolithic three-leaf panel fold structure. This robot can achieve remarkable jumping height, jumping distance, and maximum take-off velocity, of up to 87 body length (BL), 65 BL, and 930 BL s−1, respectively, under near-infrared light irradiation. Further, it is possible to control the height, distance, and direction of jump by changing the size and crease angle of the double-folded LCE ribbon actuators. These robots can efficiently jump over obstacles and can jump continuously, even in complex environments. Our simple design strategy improves the performance of jumping actuators and we expect it to have a wide-ranging impact on the strength, continuity, and adaptability of future soft robots.  相似文献   

12.
We report an aqueous and near-infrared (NIR) light mediated photoinduced reversible addition–fragmentation chain transfer (photo-RAFT) polymerization system catalyzed by tetrasulfonated zinc phthalocyanine (ZnPcS4) in the presence of peroxides. Taking advantage of its fast polymerization rates and high oxygen tolerance, this system is successfully applied for the preparation of hydrogels. Exploiting the enhanced penetration of NIR light, photoinduced gelation is effectively performed through non-transparent biological barriers. Notably, the RAFT agents embedded in these hydrogel networks can be reactivated on-demand, enabling the hydrogel healing under NIR light irradiation. In contrast to the minimal healing capability (<15 %) of hydrogels prepared by free radical polymerization (FRP), RAFT-mediated networks display more than 80 % recovery of tensile strength. Although healable polymer networks under UV and blue lights have already been established, this work is the first photochemistry system using NIR light, facilitating photoinduced healing of hydrogels through thick non-transparent barriers.  相似文献   

13.
The development of chiral optical active materials with switchable circularly polarized luminescence (CPL) signals remains a challenge. Here an azoarene-based circularly polarized luminescence molecular switch, (S, R, S)-switch 1 and (R, R, R)-switch 2 , are designed and prepared with an (R)-binaphthyl azo group as a chiral photosensitive moiety and two (S)- or (R)-binaphthyl fluorescent molecules with opposite or the same handedness as chiral fluorescent moieties. Both switches exhibit reversible trans/cis isomerization when irradiated by 365 nm UV light and 520 nm green light in solvent and liquid crystal (LC) media. In contrast with the control (R, R, R)-switch 2 , when switch 1 is doped into nematic LCs, polarization inversion and switching-off of the CPL signals are achieved in the resultant helical superstructure upon irradiation with 365 nm UV and 520 nm green light, respectively. Meanwhile, the fluorescence intensity of the system is basically unchanged during this switching process. In particular, these variations of the CPL signals could be recovered after heating, realizing the true sense of CPL reversible switching. Taking advantage of the unique CPL switching, the proof-of-concept for “a dual-optical information encryption system” based on the above CPL active material is demonstrated.  相似文献   

14.
Detailed investigations of surface topography peculiarities for two cholesteric mixtures with photovariable helix pitch are presented. The mixtures were prepared by doping cholesteric cyclosiloxane with two chiral-photochromic substances possessing different handedness. Both chiral-photochromic dopants are susceptible to UV light-induced E-Z isomerization and changing of their helical twisting power. UV irradiation allows one to change the helix pitch values of the mixtures in a wide spectral range (~350–740 nm). AFM investigation reveals the specific peculiarities of the surface topography of the mixtures’ films (formation of “fingerprint like” topography or circular, spiralized domains depending on helix pitch). Quantitative analysis of the geometry of the domains (size and cross sections) allows one to find the correlations between photo- and thermally induced helix pitch values and surface features of the films. The handedness of the dopants does not affect surface relief topography. A mechanism has been suggested to explain the topographical changes under helix untwisting, which occurs upon slow cooling of mixtures films.  相似文献   

15.
Helical superstructures are widely observed in nature, in synthetic polymers, and in supramolecular assemblies. Controlling the chirality (the handedness) of dynamic helical superstructures of molecular and macromolecular systems by external stimuli is a challenging task, but is of great fundamental significance with appealing morphology‐dependent applications. Light‐driven chirality inversion in self‐organized helical superstructures (i.e. cholesteric, chiral nematic liquid crystals) is currently in the limelight because inversion of the handedness alters the chirality of the circularly polarized light that they selectively reflect, which has wide potential for application. Here we discuss the recent developments toward inversion of the handedness of cholesteric liquid crystals enabled by photoisomerizable chiral molecular switches or motors. Different classes of chiral photoresponsive dopants (guests) capable of conferring light‐driven reversible chirality inversion of helical superstructures fabricated from different nematic hosts are discussed. Rational molecular designs of chiral molecular switches toward endowing handedness inversion to the induced helical superstructures of cholesteric liquid crystals are highlighted. This Review is concluded by throwing light on the challenges and opportunities in this emerging frontier, and it is expected to provide useful guidelines toward the development of self‐organized soft materials with stimuli‐directed chirality inversion capability and multifunctional host–guest systems.  相似文献   

16.
A new class of near‐infrared (NIR)‐absorptive (>900 nm) photosensitizer based on a phenothiazinium scaffold is reported. The stable solid compound, o‐DAP, the oxidative form of 3,7‐bis(4‐methylaminophenyl)‐10H‐phenothiazine, can generate reactive oxygen species (ROS, singlet oxygen and superoxide) under appropriate irradiation conditions. After biologically evaluating the intracellular uptake, localization, and phototoxicity of this compound, it was concluded that o‐DAP is photostable and a potential selective photodynamic therapy (PDT) agent under either NIR or white light irradiation because its photodamage is more efficient in cancer cells than in normal cells and is without significant dark toxicity. This is very rare for photosensitizers in PDT applications.  相似文献   

17.
We report here a fast-photon-mode reversible handedness inversion of a self-organized helical superstructure (i.e., a cholesteric liquid crystal phase) using photoisomerizable chiral cyclic dopants. The two light-driven cyclic azobenzenophanes with axial chirality show photochemically reversible trans to cis isomerization in solution without undergoing thermal or photoinduced racemization. As chiral inducing agents, they exhibit good solubility, high helical twisting power, and a large change in helical twisting power due to photoisomerization in three commercially available, structurally different achiral liquid crystal hosts. Therefore, we were able to reversibly tune the reflection colors from blue to near-IR by light irradiation from the induced helical superstructure. More interestingly, the different switching states of the two chiral cyclic dopants were found to be able to induce a helical superstructure of opposite handedness. In order to unambiguously determine the helical switching, we employed a new method that allowed us to directly determine the handedness of the long-pitched self-organized cholesteric phase.  相似文献   

18.
A photocleavable terpolymer hydrogel cross‐linked with o‐nitrobenzyl derivative cross‐linker is shown to be capable of self‐shaping without losing its physical integrity and robustness due to spontaneous asymmetric swelling of network caused by UV‐light‐induced gradient cleavage of chemical cross‐linkages. The continuum model and finite element method are used to elucidate the curling mechanism underlying. Remarkably, based on the self‐changing principle, the photosensitive hydrogels can be developed as photoprinting soft and wet platforms onto which specific 3D characters and images are faithfully duplicated in macro/microscale without contact by UV light irradiation under the cover of customized photomasks. Importantly, a quick response (QR) code is accurately printed on the photoactive hydrogel for the first time. Scanning QR code with a smartphone can quickly connect to a web page. This photoactive hydrogel is promising to be a new printing or recording material.

  相似文献   


19.
A series of macrocyclic azobenzene-based chiral photoswitches have been judiciously designed, synthesized, and characterized. In the molecular structures, binaphthyl is covalently linked to ortho-positions of azobenzene, and four different substituents are linked to 6,6′-positions of binaphthyl. The photoswitches show enhanced helical twisting power (HTP) when doping in commercially available achiral liquid crystals to form self-organized helical superstructures, i.e., cholesteric liquid crystals (CLCs). All the photoswitches exhibit reversible photoisomerization driven by visible light of different wavelengths in both organic solvent and liquid crystals. The photoswitches with shorter substituents enable handedness inversion of CLCs upon photoisomerization. These are the first examples of ortho-linked azobenzene-based photoswitches that enable handedness inversion in CLCs. The photoswitches with longer substituents display only HTP values decreasing while maintaining the same handedness.  相似文献   

20.
Novel light-sensitive chiral dopants are studied as a light-sensitive component in chiral liquid crystals which may be used in tunable optical devices. Light-induced cis-trans- isomerization of chiral dopants results in changes of helical twisting power which translates into variations of helical pitch. Due to the light absorption in the liquid crystal cell the pitch variation is non-uniform across the cell, which leads, at first, to a deformation of cholesteric layers, and then to the formation of cholesteric bubbles. The sequence of structural changes has a distinct visual pattern and occurs at the surface close to the UV light source. Small deformations of cholesteric layers and bubbles are unstable and disappear after removing UV irradiation. The increasing size of the cholesteric bubbles results in better stability; large bubbles do not disappear after removing UV light. A theoretical model is suggested to describe the undulations of cholesteric layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号