共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACTA short-focus microlens array using dielectric layer and inhomogeneous electric field over a homogeneous nematic liquid crystal (LC) layer is proposed. The top substrate has a planar indium tin oxide (ITO) electrode which is coated on the inner surface. The bottom substrate has strip ITO electrodes which are embedded in the dielectric layers. The inhomogeneous electric field generates a required gradient refractive index profile within the LC layer which, in turn, causes the focusing effect. Due to the thinner LC layer (15 μm), the spherical aberration should be negligible. Moreover, the fabrication process of the proposed microlens array can be easily carried out because of the layer-by-layer configuration. The simulation results show that the focal length of the LC microlens can be continuously tuned from infinity to 0.988 mm with the change of applied voltage. 相似文献
2.
A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes is proposed. A high dielectric constant layer helps to smoothen out the horizontal electric field and reduce the operating voltage. With gradient electrodes and a planar top electrode, gradient electric fields are generated and lens-like phase profile is obtained. When the applied voltage is changed, the focal length of the lens can be tuned from ∞ to 5.94 mm. Besides, the simulation results show that the lens is insensitive to polarisation while keeping parabolic-like profile. 相似文献
3.
A transflective polymer-stabilised blue-phase liquid crystal display (BP-LCD) with alternate electrodes is proposed. The alternate electrodes are composed of right triangle electrodes and slanted electrodes. To balance the optical phase retardation between the transmissive (T) and reflective (R) regions, the legs of the right triangle electrodes in the T region generate uniform horizontal electric field, the hypotenuses of the right triangle electrodes and slanted electrodes in the R region generate uniform oblique electric field. As result, the T and R regions obtain the same optical phase retardation. This display exhibits reasonably high transmittance, low operating voltage, wide viewing angle and well-matched voltage-dependent transmittance and reflectance curves. 相似文献
4.
A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure is proposed. In this design, the non-uniform electric field across the lens aperture is obtained by the modulation of the effective dielectric constant of an optical hidden layer. As the applied voltage varies from 0 to 150Vrms, the focal length of the lens can be tuned from ∞ to 16.6 mm. Simulation results show that this device has a parabolic-like profile and exhibits polarisation-independent property. 相似文献
5.
Yuqiang Guo Mingzhu Fu Yaxuan Ren Yifei Wang Qihui Mu Hongmei Ma 《Liquid crystals》2017,44(14-15):2321-2326
A blue-phase liquid crystal display (BPLCD) with single–penetration (S-P) electrodes is proposed to reduce the operating voltage. X-shape inclined-electric field is induced by the S-P electrodes with 2 ~ 3 μm height, which can lower the operating voltage by ~45%, and improve the transmittance compared with BPLCD with conventional in-plane electrodes. Moreover, the wide viewing angle and very small image distortion index can be obtained in this structure with a half-wave biaxial film. The proposed structure shows simple etching control and easy one-drop filling process of blue-phase liquid crystal compared with dual-convex-penetration electrodes. 相似文献
6.
A submillisecond response, wide view and single-cell-gap transflective (TR) display employing a blue-phase liquid crystal is proposed. The device employs polar opposite in-plane switching (IPS) electrodes. To balance the optical phase retardation between transmissive (T) and reflective (R) regions, the IPS electrodes are formed with unequal gaps in the two regions. This display exhibits reasonably high optical efficiency and well-matched voltage-dependent transmittance and reflectance curves. 相似文献
7.
ABSTRACT A double-layer liquid crystal (LC) lens array with composited dielectric layer is proposed. In our design, a spatially non-uniform electric field is generated between the strip electrodes, resulting in a gradient refractive index distribution in the LC layer. Since the upper and lower parts of the LC lens array both adopt a composite dielectric layer, the operation voltage of the LC lens array is effectively reduced. In terms of LC lenslet, the double-layer design doubles the phase difference between the centre and the periphery of the LC layer, thereby reducing the focal length of the LC lens array. In addition, the shortest focal length (~1.78 mm) of the LC lens array is obtained at V = 3.3 V, and the LC lens array has a large focusing range. 相似文献
8.
We propose a blue-phase liquid crystal (BPLC) lens array based on dual square ring-patterned electrodes. A high dielectric constant layer is used to smoothen out the horizontal electric field and reduce the operating voltage. By creating a potential difference between the dual square ring-patterned electrodes, gradient electric fields are generated and lens-like phase profile is obtained. Besides, the focal length of the BPLC lens is adjustable with voltage changes and all simulation results indicate that the BPLC lens array is polarisation-insensitive. 相似文献
9.
Nejmettin Avci 《Liquid crystals》2017,44(10):1559-1565
A simple method for fabricating polarisation-independent blue-phase liquid crystal phase grating is demonstrated by implementing photopolymerisation-induced phase separation through a binary photomask. The dynamic focusing property of the proposed liquid crystal grating is independent of the polarisation state of incident light. The efficiency of various diffraction orders for the phase grating was measured as a function of the applied voltage. Experimental results show that the maximum diffraction efficiency reaches 36% for the ±1 order, which approaches the theoretical limit ~41%. The measured rise time is 1.4 ms and fall time is 2.2 ms. Such a tunable grating has great potential for photonic applications. 相似文献
10.
A single-cell-gap transflective polymer-stabilised blue-phase liquid crystal display with opposite polar pixel electrodes on an etched substrate is proposed. In the proposed structure, the space between common electrodes is adopted as transmissive region, and the space above the common electrode is adopted as reflective region. By optimising the electrode parameters of the transmissive and reflective regions, well-matched voltage-dependent transmittance and reflectance curves can be obtained. In addition, the device has good performances of low operating voltage (~3.2 V), high optical efficiency and a wide viewing angle. 相似文献
11.
A transflective blue-phase liquid crystal display (TRBP-LCD) with dielectric protrusions is proposed. The dielectric protrusions are fixed on the in-plane-switching (IPS) electrodes. The potential drops very slowly in the dielectric protrusions, thus the total field penetrating depth is significantly enlarged and the operating voltage is lowered, which helps suppressing electrostriction effect. The different heights of the dielectric protrusions in the transmissive (T) and reflective (R) regions contribute to balance the optical phase retardation between the T and R regions. The simulation results verify that the proposed TRBP-LCD can achieve low operating voltage and good sunlight readability. 相似文献
12.
A transflective polymer-stabilised blue-phase liquid display with partitioned wall-shaped electrodes
A transflective polymer-stabilised blue-phase liquid crystal display (BP-LCD) with partitioned wall-shaped electrodes is proposed. The etched polymer layer contributes to balance the optical phase retardation between transmissive (T) and reflective (R) regions. The partitioned wall-shaped electrodes generate uniform and horizontal fields throughout the entire LC layer to induce isotropic-to-anisotropic transition in the blue-phase liquid crystal medium through Kerr effect. Consequently, the accumulated phase retardation along beam path is large, resulting in reasonable low operation voltage and high transmittance both in T and R regions. This approach enables the BP-LCD to be addressed by amorphous silicon thin-film transistors. Moreover, it exhibits wide viewing angle and a well-matched gamma curve. 相似文献
13.
The optimised structures of blue-phase liquid crystal display (BPLCD) with various protrusions were discussed in this article. The voltage-dependent transmittances for the cell with four protrusion shapes, wall-shaped electrode, trapezoid electrode, double penetration electrode and elliptical electrode, are simulated. The electrode gap and width and protrusion height’s effects on the optimised cell gap and the corresponding operating voltage are calculated. The optimised cell has the lowest operating voltage and relative high transmittance. The results are significant on design BPLCD with low operating voltage. 相似文献
14.
We report a polymer-stabilised blue-phase liquid crystal (BPLC) in an in-plane-switching (IPS) cell with negligible hysteresis and good stability. Long ultraviolet (UV) wavelength and top-side (no IPS electrode) exposure create uniform polymer network, which in turn helps to suppress hysteresis. The effect of photoinitiator is also investigated. Although a BPLC precursor without photoinitiator requires a higher UV dosage to stabilise the polymer network, it is favourable for keeping high resistivity and reducing image sticking. 相似文献
15.
A polymer-stabilised blue-phase liquid crystal display (PSBP-LCD) with double-sided protrusion (DSP) electrodes structure is proposed. The oblique electric field between the protrusion electrodes inside both top and bottom glass substrates can induce more isotropic-to-anisotropic transition in the polymer-stabilised blue-phase liquid crystal (PS-BPLC) medium through Kerr effect than using the in-plane switching electrode. For the same electrode width, spacing and cell gap, the transmittance of PSBP-LCD with the DSP electrodes is ~29% higher than that using the IPS electrode. 相似文献
16.
ABSTRACTWe propose an adaptive nematic liquid crystal (LC) lens array using a dielectric layer with low dielectric constant as resistive layer. With the resistive layer and periodic-arranged iridium tin oxide (ITO) electrodes, the vertical electric field across the LC layer varies linearly over the lens aperture is obtained in the voltage-on state. As a result, a centrosymmetric gradient refractive index profile within the LC layer is generated, which causes the focusing behaviour. As a result of the optimisation, a thin cell gap which greatly reduces the switching time of the LC lens array can be achieved in our design. The main advantages of the proposed LC lens array are in the comparatively low operating voltage, the flat substrate surface, the simple electrodes, and the uniform LC cell gap. The simulation results show that the focal length of the LC lens array can be tuned continuously from infinity to 3.99 mm by changing the applied voltage. 相似文献
17.
A blue-phase liquid crystal displays (BP-LCDs) with slit-shaped pixel and common electrodes structure is proposed to increase the transmittance. It generates not only in plane field between the pixel electrodes, but also fringe field above the common electrodes. As a result, the high transmittance is obtained. The aperture ratio is also improved because of the capacitor between the pixel and common electrodes. 相似文献
18.
《Liquid crystals》2012,39(12):1790-1798
ABSTRACTA simple transflective liquid crystal display with a vertically aligned cell using a composite dielectric layer is demonstrated. The top substrate has a top planar common electrode, two transparent dielectric layers with different dielectric constants are coated on the bottom planar pixel electrode to generate linearly varying electric potential from the transmissive region (T region) to the reflective region (R region), while two bumpy reflectors are coated under the bottom substrate. In this device, with the composite dielectric layer, the common and pixel electrodes generate a strong electric potential in the T region and a relatively weak electric potential in the R region. Consequently, the T and R regions accumulate the same electro-optical characteristics. The simulation results show that the display exhibits reasonably low operating voltage, high optical efficiency and well-matched voltage-dependent transmittance (VT) and reflectance (VR) curves. Besides, the driving mode and the fabrication process of the transflective liquid crystal display are fairly simple and it is suitable for mobile applications. 相似文献
19.
A low-voltage and high-transmittance blue-phase liquid crystal display (BPLCD) with concave electrodes is proposed. We use in-plane switching electrodes on the etched substrates to generate the concave electrodes. The proposed device can generate a strong in-plane field with a large horizontal component to increase the transmittance and reduce the operating voltage. As a result, a low voltage ~9 V and reasonably high transmittance ~71.7% can be achieved. Moreover, due to the generated multi-domain structures in the etched areas, this BPLCD can obtain a symmetric and wide viewing angle and the contrast ratio of 1000:1 is obtained over 60° viewing cone. 相似文献
20.
Yuqiang Guo Xiaoshuai Li Yanling Yang Chi Zhang Yan Sun Hui Zhang 《Liquid crystals》2020,47(2):199-210
ABSTRACT A single-domain blue-phase liquid crystal display (BPLCD), which has asymmetrical double-side electrode structure, is proposed to reduce gamma shift. Firstly, the electro-optical curve and gamma shift of the proposed BPLCD are discussed under the comparison with conventional in-plane switching (IPS) BPLCD. And then, its gamma shift is investigated under various conditions. Compared with the conventional IPS-BPLCD, the operating voltage can be reduced by ~31%, and the transmittance is increased by ~6%. The indistinguishable gamma shift can be obtained under various electrodes’ sizes, when the cell gap is appropriate. The results also indicate that if the electrodes’ height and Kerr constant of BPLC increase, the operating voltage can be further reduced (only 9.6 V in this work), and the gamma shift almost do not change. Moreover, a certain misalignment between the top and bottom glasses are permitted, which is good for reducing the fabrication difficulty. In terms of viewing angle, the proposed BPLCD has an average contrast ratio of ~5000:1, and the gamma shifts at full viewing angles are all indistinguishable. 相似文献