首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A series of non-symmetric liquid crystal (LC) dimers with the same chiral core 1,2-propanediol (PD) have been synthesised, termed as ABBA-PD-TFBA, PBBA-PD-TFBA, ABA-PD-TFBA, PBA-PD-TFBA and AA-PD-TFBA, respectively, in which one of the two mesogenic groups, the fluorinated mesogenic unit, was kept fix and the other arm was different. The intermediate compounds and LC dimers were characterised by FTIR, 1H NMR, differential scanning calorimetry, thermogravimetric analysis, polarised optical microscopy and X-ray diffractometer (XRD). The results of the measurements indicated that ABBA-PD-TFBA, PBBA-PD-TFBA and ABA-PD-TFBA displayed optical activity and enantiotropic chiral nematic phase, and PBA-PD-TFBA was an enantiotropic nematic LC while AA-PD-TFBA was a monotropic LC, displaying both nematic phase and smectic A phase on cooling. The results indicated that PD was able to induce the chiral nematic phase, nevertheless, the rigidity of the mesogenic arm, the flexibility of the terminal group and even the type of the terminal chemical bond played an important effect on the thermal properties of the dimers, and even on the formation of the chiral nematic phase. It is also worth noting that C=C at the terminal helped to stabilise the LC phase.  相似文献   

2.
A two new series of materials with a chiral fragment derived from ((S)-()-2-methyl-1-butanol and 6-alkoxy-2-naphathoic acid as the molecular core was synthesised and investigated. All the homologues exhibited enantiotropic mesomorphism. Chiral smectic C (SmC*), smectic A (SmA) and chiral nematic (N*) phases were observed in different homologues. All the compounds were characterised by spectroscopic and elemental analysis. Thermal investigations and mesophase characterisations for all the compounds were carried out by the combination of DSC and POM analysis. The effects of the central linkage and various terminal normal alkyl chains with its structurally related compounds have been discussed.  相似文献   

3.
ABSTRACT

A series of symmetric liquid crystal (LC) dimers with the same chiral core (S)-1-phenylethane-1,2-diol ((S)-PE) have been synthesised, termed TBDA-(S)-PE, 3F3B-(S)-PE, 3F2B-(S)-PE, 1F3B-(S)-PE, 1F2B-(S)-PE, respectively. Chemical structures and LC properties of the five symmetric LC dimers were characterised by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance hydrogen spectrometer (1H NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and polarised optical microscopy (POM). TBDA-(S)-PE displayed enantiotropic chiral smectic A (SmA*) phase while 3F3B-(S)-PE, 3F2B-(S)-PE, 1F2B-(S)-PE all displayed enantiotropic chiral nematic (N*) phase and 1F3B-(S)-PE displayed monotropic N* phase. The results indicated that the removal of the flexible spacers between the rigid mesogenic arm and the chiral core facilitated the formation of the N* phase. When the rigid mesogenic units are connected to the chiral core directly, the structure of the terminal fluorine group and the rigidity of the mesogenic unit played certain influence on the thermal properties of the LC dimers, but did not change the type of mesomorphic phase. Compared to 3F3B-(S)-PE and 1F3B-(S)-PE, 3F2B-(S)-PE and 1F2B-(S)-PE displayed wider LC ranges, respectively, suggesting molecular regularity had greater influence on LC-isotropic (I) transition temperature.  相似文献   

4.
A new series of non-symmetric chiral isoflavone-based liquid crystalline dimers, α-(2-methylbutyl-4′-(4″-phenyloxy)benzoate)-ω-(3-(4′-decyloxyphenyl)-4H-1-benzopyran-4-one-7-oxy)alkanes, with 3–12 carbon atoms in the alkyloxy spacer, have been synthesised. A pronounced odd–even effect for the phase transition temperatures upon varying the spacer length was observed. The short dimers exhibited monolayer smectic A (SmA) and smectic C (SmC*) phases while for longer homologues a chiral nematic (N*) phase was found. The temperature range of the nematic phase was broadened with elongation of the alkyl spacer. Stabilisation of the nematic phase resulted from competition between the monolayer and intercalated smectic structures. The SmA–SmC* phase transition was second order for all studied compounds with a cross over to the de Vries type behaviour for the shortest homologue.  相似文献   

5.
Xin Li  Xin Lan  Shuang Ma  Lu Bai  Mei Tian 《Liquid crystals》2013,40(12):1843-1853
A series of cholesteryl-containing imidazolium chlorides and imidazolium tetrachloroaluminates were synthesised, and the chemical structure, liquid crystalline behaviour and ionic conductivity were characterised by several technical methods. Whereas the imidazolium chlorides show chiral smectic A (SmA*) phase on heating and cooling cycles, the imidazolium tetrachloroaluminates display chiral nematic (N*) phase, which is uncommon for ionic liquid crystals (ILCs). The imidazolium chlorides display similar phase transition temperature and entropy, indicating the cholesteryl component influence predominately on the phase transition rather than the different alkyl substituent groups. The imidazolium tetrachloroaluminates show lower melting point temperatures and lower clear point temperature than the imidazolium chlorides. The mesophases exist at rather moderate temperatures. Non-mesomorphic imidazolium tetrachloroaluminate(III) salts with short alkyl substituents have been known for a long time, and the synthesised imidazolium tetrachloroaluminates are the first examples of tetrahalogenoaluminate(III)-containing ILCs. For the imidazolium tetrachloroaluminates, imidazolium cations combine loosely with AlCl4? ions because AlCl4? ions are large and occupy more space in spite of the hydrogen bond and electrostatic attraction interaction, indicating that the layer structure can be destroyed easily to form N* phase on heating.  相似文献   

6.
MesomorphicCharacteristicsofInducedChiralNematicPhaseof[SmecticLCP,PS(4BC/DM)/NematicLC,E7/ChiralDopant,CB┐15]┐TernaryComposi...  相似文献   

7.
The temperature‐ and electric field‐dependent dielectric relaxation and polarisation of a new chiral swallow tailed antiferroelectric liquid crystal, i.e. 1‐ethylpropyl (S)‐2‐{6‐[4‐(4′‐decyloxyphenyl)benzoyloxy]‐2‐naphthyl}propionate (abbreviated as EP10PBNP), were investigated. The electric field‐induced dielectric loss spectra of EP10PBNP revealed electroclinic and anomalous dielectric behaviour in the chiral smectic A (SmA*)–chiral antiferroelectric smectic C (SmCA*) pre‐transitional regime. From an analysis of thermal hysteresis of the dielectric constant, electric field‐induced polarisation and dielectric loss spectra, the appearance of a ferrielectric‐like mesophase is observed followed by an unstable SmCA* phase in the SmA*–SmCA* pre‐transitional regime.  相似文献   

8.
Sixteen optically active, non‐symmetric dimers, in which cyanobiphenyl and salicylaldimine mesogens are interlinked by a flexible spacer, were synthesized and characterized. While the terminal chiral tail, in the form of either (R)‐2‐octyloxy or (S)‐2‐octyloxy chain attached to salicylaldimine core, was held constant, the number of methylene units in the spacer was varied from 3 to 10 affording eight pairs of (R & S) enantiomers. They were probed for their thermal properties with the aid of orthoscopy, conoscopy, differential scanning calorimetry and X‐ray powder diffraction. In addition, the binary mixture study was carried out using chiral and achiral dimers with the intensions of stabilizing optically biaxial phase/s, re‐entrant phases and important phase sequences. Notably, one of the chiral dimers as well as some mixtures exhibited a biaxial smectic A (SmAb) phase appearing between a uniaxial SmA and a re‐entrant uniaxial SmA phases. The mesophases such as chiral nematic (N*) and frustrated phases viz., blue phases (BPs) and twist grain boundary (TGB) phases, were also found to occur in most of the dimers and mixtures. X‐ray diffraction studies revealed that the dimers possessing oxybutoxy and oxypentoxy spacers show interdigitated (SmAd) phase where smectic periodicity is over 1.4 times the molecular length; whereas in the intercalated SmA (SmAc) phase formed by a dimer having oxydecoxy spacer the periodicity was found to be approximately half the molecular length. The handedness of the helical structure of the N* phases formed by two enantiomers was examined with the aid of CD measurements; as expected, these enantiomers showed optical activities of equal magnitudes but with opposite signs. Overall, it appears that the chiral dimers and mixtures presented herein may serve as model systems in design and developing novel materials exhibiting the apolar SmAb phase possessing D2h symmetry and nematic‐type biaxiality.  相似文献   

9.
We studied the electro-optic and dielectric properties of three pure ferroelectric liquid crystal materials (C10, C11 and C12) of the same series exhibiting cholesteric (N*), smectic A (SmA) and chiral smectic C (SmC*) phases. From electro-optic investigations, the tilt angle and spontaneous polarisation were determined as a function of temperature. In the dielectric measurements carried out without a dc bias field, we studied the soft-mode relaxation in the SmA phase. From experimental data and using the results of a Landau model, we evaluated the soft-mode rotational viscosity and the electroclinic coefficient in the SmA phase. A soft-mode like mechanism was also observed in the N* phase for compounds with shorter chains (C10 and C11). This relaxation process is not detected for the homologue with a longer chain (C12). The observation of this mechanism is related to smectic order fluctuations within N* phase whose amplitude is increased when approaching the SmC*–SmA–N* multicritical point.  相似文献   

10.
《Liquid crystals》1997,23(5):667-676
A transition between the transparent smectic A (SmA) phase and the light scattering chiral nematic (N*) phase was realized based on the thermally induced SmA N* phase transition for the homeotropically aligned \[liquid crystalline polymer (LCP)/liquid crystal (LC)/chiral dopant] ternary composite system. The LCP played an important role in increasing the intensity of the light scattering of the heat-induced N* phase. Meanwhile the effects of the composition of the ternary composite system on the thermo-optical characteristics were also investigated.  相似文献   

11.
The synthesis and characterization of five hydrogen-bonded ferroelectric liquid crystal complexes (HBFLCs) prepared from mesogenic p-n-alkoxy benzoic acids and non-mesogenic propionic/butyric acids with different chiral centres are reported. Complementary intermolecular hydrogen bonding is confirmed through IR study. HBFLCs are found to exhibit chiral nematic (N*), smectic C* (SmC*) and smectic G* (monotropic) phases in their cooling profiles during polarizing thermal microscopy and differential scanning calorimetry. Phase coexistence regions are observed above the IN* transition. The chiral nematic to smectic C* transition is found to be of first order. The temperature variation of spontaneous polarization exhibited by these HBFLC complexes in their SmC* phase is presented. The effect of non-covalent interaction imparted by the soft hydrogen bonding in these LC complexes on enhanced or induced thermal stability of tilted LC phases is discussed.  相似文献   

12.
A (photo-polymerizable liquid crystal (LC) monomer/LCs/chiral dopant/photoinitiator) mixture with a smectic A (SmA)-chiral nematic (N*) phase transition was sandwiched between two ITO glass substrates which were not subjected to any surface orientation treatment. When an electric field-induced homeotropically oriented SmA phase of the mixture was irradiated with UV light, an oriented liquid crystalline polymer (LCP) network was formed upon photo-polymerization of the LC monomer. Then, a (homeotropically oriented LCP network/LCs/chiral dopant) composite with a SmA-N* phase transition was prepared. A focal-conic texture appeared in the heat-induced N* phase of the composite upon heating from the transparent state of the homeotropically oriented SmA phase; the focal-conic texture exhibited strong light scattering. Upon cooling the composite to the SmA phase, this phase was again homeotropically oriented due to the strong intermolecular interaction between the LC molecules and the homeotropically oriented LCP network. Thus, the transparent state of the SmA phase and the light scattering state of the N* phase occurred reversibly upon cooling and heating, accompanied by the thermal SmA-N* phase transition.  相似文献   

13.
《Liquid crystals》2000,27(12):1695-1699
A (photo-polymerizable liquid crystal (LC) monomer/LCs/chiral dopant/photoinitiator) mixture with a smectic A (SmA)-chiral nematic (N*) phase transition was sandwiched between two ITO glass substrates which were not subjected to any surface orientation treatment. When an electric field-induced homeotropically oriented SmA phase of the mixture was irradiated with UV light, an oriented liquid crystalline polymer (LCP) network was formed upon photo-polymerization of the LC monomer. Then, a (homeotropically oriented LCP network/LCs/chiral dopant) composite with a SmA-N* phase transition was prepared. A focal-conic texture appeared in the heat-induced N* phase of the composite upon heating from the transparent state of the homeotropically oriented SmA phase; the focal-conic texture exhibited strong light scattering. Upon cooling the composite to the SmA phase, this phase was again homeotropically oriented due to the strong intermolecular interaction between the LC molecules and the homeotropically oriented LCP network. Thus, the transparent state of the SmA phase and the light scattering state of the N* phase occurred reversibly upon cooling and heating, accompanied by the thermal SmA-N* phase transition.  相似文献   

14.
The synthesis of four new chiral mesogenic monomers (M1–M4) and side chain ferroelectric liquid crystalline polymers containing (2S, 3S)-2-chloro-3-methylpentanoate is described. The chemical structures and phase behaviour of the monomers and polymers obtained in this study were characterised by Fourier transform infrared, proton nuclear magnetic resonance, polarising optical microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. The selective reflection of light was investigated with ultraviolet/visible (UV/Vis). Their structure–mesomorphism relationships were discussed. M1 and P1 all showed a chiral smectic C (SmC*) phase. M2 and M3 revealed a SmC* phase and cholesteric phase, while their corresponding polymers P2 and P3 revealed a SmC* phase and smectic A (SmA) phase. M4 only exhibited a cholesteric phase, whereas the corresponding polymers P4 showed a SmA phase. Moreover, the selective reflection of light shifted to the long-wavelength region at the SmC* phase range and to the short-wavelength region at the cholesteric range with increasing temperature, respectively. The results seemed to demonstrate that the tendency towards melting temperature (Tm), glass transition temperature (Tg), isotropic temperature (Ti) and mesophase range for the monomers and polymers increased by increasing the mesogenic core rigidity or the number of phenyl ring. The polymerisation effect could lead to higher liquid crystalline to isotropic phase transition temperature, wider mesophase range and more ordered smectic phase formed. In addition, all the obtained polymers had a very good thermal stability and the corresponding Td increased by increasing the number of phenyl ring.  相似文献   

15.
Dielectric measurements have been carried out on the chiral smectic Cα (SmCα*) phase of a MHPOBC analogous compound. Two relaxation modes have been observed in this phase for planar orientation of the molecules. One process has been observed at frequency lower than that of the soft mode of the chiral smectic A (SmA*) phase. This relaxation process is connected with the helicity of the SmCα* phase. In the high‐frequency region, another relaxation process has been observed in the SmCα* phase for which bias field dependence is similar to that of the soft mode at the SmA*–SmC* phase transition. The experimental observations are in agreement with a recently proposed dielectric theory for the SmCα* phase and theoretical dielectric results obtained by numerical simulations. Thus, we report here experimental verification of two theoretically predicted dielectric modes in the SmCα* phase.  相似文献   

16.
ABSTRACT

Four compounds containing two lactate groups and one perfluorocarbon chain are designed and synthesised, whose chirality is tuned by changing the chirality of the lactic acid residues. (R,S)- and (S,R)-2 stereoiosomers exhibit an enantiotropic SmA phase, while (R,R)- and (S,S)-2 stereoisomers exhibit an enantiotropic SmA phase and an enantiotropic SmCd* one. Therefore, the chirality of the compounds plays an important role in the mesomorphic behaviours of the compounds. The optical activity of these liquid crystals is dominated by the chirality of the lactate group near the core. (R)- and (S)-1 with one lactic acid residue and one perfluorocarbon chain exhibit only an enantiotropic SmA phase.  相似文献   

17.
ABSTRACT

New liquid crystals categorised as cholesteryl dimers have been successfully synthesised through the reaction between cholesteryl 4-(prop-2-ynyloxy)benzoate moieties with n-azido(cholesteryloxy-carbonyl)alkane. All the dimers display enantiotropic mesophases. Whilst the odd-numbered dimers exhibit chiral nematic (N*), twisted grain boundary (TGB) and chiral smectic C (SmC*) phases, the even-numbered members from the same series show chiral smectic A and C. A detailed inspection on mesophase reveals that the chiral centres and the bent conformation of the odd-numbered members are essential for the induction of TGB phase. However, upon decreasing the temperature, the ratio of the transition temperatures (TSmC*-SmA*/TSmA*-I) is found to be 0.95, which indicate the second order transition according to the McMillan’s molecular theory. In addition, the X-ray diffraction study supports the presence of the smectic A phase on the even members rather than the N* by the appearance of the Bragg diffraction peaks at 190°C. A comparison study with the other analogues in which the cholesterol entity is substituted by azobenzene or biphenyl tails has been carried out to assess the relationship between the molecular structure and mesomorphic behaviour.  相似文献   

18.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n-butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N*) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC*) mesophase. The metal complexes with n-butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N* phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C* phase of the two ligands.  相似文献   

19.
The light switching characteristics induced by a thermal smectic A (SmA) ? chiral nematic (N*) phase transition were studied for homeotropically aligned [smectic A liquid crystal (SmA-LC)/nematic liquid crystal (N-LC)/chiral dopant] and [side chain type smectic A liquid crystalline polymer (SmA-LCP)/N-LC/chiral dopant] composites. A drastic change from a transparent SmA phase to a light-scattering N* phase occurred in both composites upon heating. In the case of the heat-induced N* phase for the (SmA-LC/N-LC/chiral dopant) composite, the N* phase exhibited weak light scattering due to formation of a scroll texture. On the other hand, in the case of the heat-induced N* phase for the (SmA-LCP/N-LC/chiral dopant) composite, the N* phase showed strong light scattering due to formation of a focalconic texture. The existence of a SmA-LCP was responsible for a higher contrast ratio between the transparent SmA phase and the light scattering N* phase for the (SmA-LCP/ N-LC/chiral dopant) composite than for the (SA-LCN/N-LC/chiral dopant) composite.  相似文献   

20.
ABSTRACT

A homologous series of new chiral liquid crystal compounds, MnBEB (n = 4–10), was prepared by covalently linking a chiral (–)-menthyl with biphenyl-benzoate via a dicarboxylic spacer of varying length and parity. A combination of analysis methods, such as FT-IR, 1H NMR spectra, differential scanning calorimetry (DSC), polarised optical microscopy (POM) and X-ray diffraction was carried out to systematically investigate their phase structures and phase transition behaviours. The length and parity of the flexible spacers has a profound influence on the Tm and Tc and a modest odd-even effect is observed for the chiral liquid crystal compounds MnBEB. Only compound M4BEB developed an N* phase with selectively reflection on heating and a blue phase on cooling process. In addition, increasing the length of the flexible spacers tends to narrow the temperature range of the N* phase and widen the smectic phase, moreover, the pitch becomes longer with the spacer increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号