共查询到20条相似文献,搜索用时 15 毫秒
1.
石墨炉原子化器中原子化过程的研究(Ⅲ)——石墨炉中锗的原子化机理 总被引:2,自引:0,他引:2
有关锗的石墨炉原子吸收光谱分析,文献报道较少,对锗的原子化机理,亦有不同的看法[1~3].本文基于右墨炉中锗原孚化行为的观察,对锗原子形成的过程进行了讨论,认为原子化过程中,并存着二种还原反应:GeO2(s)+C→GeO(g)+CO(g),GeO2(s)+CO→GeO(g)+CO2,而锗原子的形成是GeO(g)热分解的结果。 相似文献
2.
本文研究了在热解石墨管(PGT)、涂钨(WPGT)和涂锆(ZrPGT)热解石墨管中,氯化物基体等对铝原子吸收信号的影响,讨论了干扰机理。 相似文献
3.
石墨炉原子化器中原子化过程的研究(Ⅴ)——高氯酸对锂和锗的干扰 总被引:2,自引:0,他引:2
本文详细地研究了HClO4对Li和Ge的干扰.HClO4对Li原子吸收信号有明显的抑制作用,干扰的主要原因是气相中形成LiCl。当预加热温度达2000℃时,残留HClO4干扰可消除。在HClO4分解之前加入NH4NO3,可消除其干扰。HClO4对Ge有增感作用,并与灰化温度有密切关系。500℃以前HClO4增感效应随温度升高变化较小,高于500℃增感效应明显增加。 相似文献
4.
石墨炉内石墨探针表面原子化机理的研究:Ⅳ.硝酸铕的原子化机理 总被引:1,自引:0,他引:1
用X-射线衍射分析与X-射线光电子能谱分析研究了硝酸铕在石墨炉内石墨探针表面原子化机理。研究结果表明,在硝酸铕的原子化过程中,Eu(NO3)3先转化Eu2O3,生成的Eu2O3经一系列的晶型转变之后,热分解为EuO(s),后者以EuO(g)形式蒸发进入气相。硝酸铕的原子化起源于EuO(g)的热分解。在1660K和1920K时有铕的碳化物EuC2生成。 相似文献
5.
元素在石墨炉内石墨探针表面上的原子化机理研究:Ⅶ.锗的原子化机理 总被引:2,自引:0,他引:2
本文应用X-射线衍射,X-射线光电子能谱,俄歇电子能谱和其它一些实验,考察石墨炉升温过程中氟化锗,锗酸钠在石墨探针表面上的形态变化,阐明了它们的原子化机理:GeF2与Na2GeO3首先分解为GeO2,GeO2还原为GeO,后者在>2400K热分解产生自由态的锗原子,GeF2和Na2GeO3的原子化均源于GeO(g)的气相分解。原子化的升温过程中,在1400-2400K GeF2和Na2GeO3都产 相似文献
6.
石墨炉内石墨探针表面上的原子化机理研究 III. 铬的原子化机理 总被引:2,自引:0,他引:2
本文利用探针原子化技术, 研究了普通管式石墨炉内石墨探针表面上铬化合物的原子化过程。X射线衍射分析(XRD)、俄歇电子能谱(AES)、化学分析光电子能谱分析(ESCA)与石墨炉原子吸收光谱(GFAAS)测量的综合结果表明, 铬化合物在灰化阶段即可转化为稳定的碳化物, 最后由碳化物的热分解生成气态铬原子。 相似文献
7.
石墨炉中氯化物常引起铅吸收信号的变化,甚至导致双吸收峰。它严重地影响测定铅的灵敏度和准确度。吸收信号曲线反映了石墨炉中原子化阶段的原子数变化。那么,氯化物对铅原子化的影响,必然会反映在吸收信号曲线上。这就可能通过对氯化物引起铅吸收信号曲线变化的观察,研究干扰的机理。本文用比较的方法研究了氯化物干扰的机理。实验部分 1.仪器和试剂日立180-50原子吸收分光计。GA-3石墨炉。标准石墨管。吸收信号用XWT-164记录 相似文献
8.
本文利用探针原子化技术, 研究了普通管式石墨炉内石墨探针表面上铬化合物的原子化过程。X射线衍射分析(XRD)、俄歇电子能谱(AES)、化学分析光电子能谱分析(ESCA)与石墨炉原子吸收光谱(GFAAS)测量的综合结果表明, 铬化合物在灰化阶段即可转化为稳定的碳化物, 最后由碳化物的热分解生成气态铬原子。 相似文献
9.
10.
钯镁基体改进剂对铅,铋,锗在石墨炉中原子化影响的研究 总被引:7,自引:0,他引:7
通过原子吸收和X-射线衍射分析证明,加入钯镁基体改进剂在预热处理后对Pb、Bi和Ge三个元素分别生成金属间化合物PbPd_3、BiPd_3、Ge_9Pd_(23)和其他化合物,从而提高了最高允许灰化温度,改变了原子化机理。在原子化阶段这些金属间化合物直接分解为金属原子,结果提高测定灵敏度。 相似文献
11.
本文应用x-射线衍射(XRD)、X-射线光电子能谱(XPS)、俄歇电子能谱(AES)、扫描电子显微技术(SEM)研究了钼酸铵在石墨炉内石墨探针表面上的原子化机理。实验结果表明,在温度<1350K时,钼酸铵经历MoO_3和Mo_4O_(11)中间产物转变为MoO_2(s)。在更高温度下,MoO_2(s)首先还原为Mo_2C,而后进一步转变为MoC(s)。MoC再分解为Mo(s)。钼的原子化起源于Mo的升华。 相似文献
12.
利用探针原子化技术,研究了在普通石墨管中锡化合物的原子化过程中所发生的化学反应,阐述了锡的原子化机理。结果表明,锡试样首先转化成为氧化物,氧化物发生石墨碳还原而生成气态原子。 相似文献
13.
14.
15.
本文采用计算机联机技术,测定并计算了锰原子吸收的时间分辨信号,得出在信号的初始几百毫秒为一级反应动力学过程,在升温速率较小的近恒温条件下为零级反应动力学过程。借助探针技术对石墨表面进行X射线光电子能谱(XPS)分析,表明锰在石墨炉中的原子化经过锰的高价氧化态到低价氧化态,最后氧化锰气相分解生成锰原子。 相似文献
16.
在石墨炉原子吸收光谱(GFAAS)法中,反应前后的化合物形态可以借助于X射线衍射(XRD)、俄歇电子能谱(AES)及化学分析光电子能谱(ESCA)等现代分析仪器来鉴定,本文综合利用上述分析方法,对锰化合物在石墨探针表面上于不同温度下的化学形态进行鉴定,结合元素的灰化和原子化曲线,详细地研究和阐述了锰的原子化机理。 相似文献
17.
本文研究了氢化物原子吸收中电热石英管原子化器表面在氢化物原子化中的作用,实验证实一些元素氢化物的原子化包含有表面过程,并不是单纯的气相原子化过程。 相似文献
18.
探针原子化石墨炉原子吸收绝对分析法的研究 总被引:1,自引:0,他引:1
本文研究了探针等温原子化技术应用于石墨炉分析中进行绝对分析的可能性,将实验得到的10个元素的特征质量值(m_(oexp))与理论计算值(m_(o(?)al))进行了比较,讨论了原子化温度和Zeeman效应对特征质量的影响。本法的m_(o(?)al/m_(oexp)比值的平均值和标准偏差为0.94士0.10。 相似文献
19.
用X射线衍射、X射线光电子能谱、俄歇电子能谱和扫描电子显微术等考察了石墨炉升温过程中Sr(NO3)2在石墨探针表面上的形态变化,阐明了它的原子化机理.加热过程中Sr(NO3)2首先分解为SrO(s),再还原为SrC2,后者进一步分解为Sr(s).锶的原子化源于金属蒸发. 相似文献
20.