首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we report an evolution of surface morphology of silver film irradiated by a 1 kHz femtosecond laser. By SEM observations, it is noted that different nanostructures with respective surface features depend highly on the number of pulses and the laser fluence. Especially when the laser fluence is below the threshold fluence of film breakdown, a textured nanostructure including many nanobumps and nanocavities will appear on the surface of silver film. In order to determine an optimal regime for nanostructuring silver film and to further study the underlying mechanism, we perform a quantitative analysis of laser fluence and pulse number. The results show that this nanostructure formation should be due to a sequential process of laser melting, vapor bubbles bursting, heat stress confinement, and subsequent material redistribution. As a potential application, we find this nanostructured silver film can be used as the active substrate for surface enhanced Raman scattering effect.  相似文献   

2.
Laser surface micro/nanopatterning by particle lens arrays is a well-known technique. Enhanced optical fields can be achieved on a substrate when a laser beam passes through a self-assembled monolayer of silica microspheres placed on the substrate. This enhanced optical field is responsible for ablative material removal from the substrate resulting in a patterned surface. Because of the laser ablation, the microspheres are often ejected from the substrate during laser irradiation. This is a major issue impeding this technique to be used for large area texturing. We explored the possibility to retain the spheres on the substrate surface during laser irradiation. A picosecond laser system (wavelength of 515 nm, pulse duration 6.7 ps, repetition rate 400 kHz) was employed to write patterns through the lens array on a silicon substrate. In this experimental study, the pulse energy was found to be a key factor to realize surface patterning and retain the spheres during the process. When the laser pulse energy is set within the process window, the microspheres stay on the substrate during and after laser irradiation. Periodic patterns of nanoholes can be textured on the substrate surface. The spacing between the nanoholes is determined by the diameter of the microspheres. The depth of the nanoholes varies, depending on the number of laser pulses applied and pulse energy. Large area texturing can be made using overlapping pulses obtained through laser beam scanning.  相似文献   

3.
We investigate the morphology change of Au film on sapphire substrate by irradiating with a 1 kHz femtosecond pulse laser. Under observation of a scanning electron microscope, a textured nanostructure was formed in the exposed area on Au film due to laser ablation and subsequent stress relaxation. This process was strongly determined by the laser intensity profile and the dynamics of molten liquid. With the increasing of laser pulses number, the Au film was broken down and then a few polarization-dependent nanoripples arranged in the same direction appeared on the sapphire surface, which may result from a spatial modulation of energy due to the interference between the incident light and the excited surface plasmon polaritons. In addition, we used an energy dispersive spectrometer to analyze the chemical composition of nanoripples on the surface and in the ablated crater, respectively. The changes of O and Al elements implied that a complicated chemical transformation participated in the nanoripples formation process. We believe that present results are very useful for the analysis of the interaction between femtosecond laser and solids, especially the film material.  相似文献   

4.
Modulation grating has been achieved by two interfered femtosecond laser pulses on the surface of the silica glass. The modulation grating formed at the middle of each bulge of the common grating and was attributed to the higher-order modulation arising from second-harmonic generation (SHG) of the femtosecond laser pulse incident to the surface of silica glass. The periods and depths of the fundamental grating and the modulation grating have been observed by using an atomic force microscopy (AFM). Experimental results show that the average depth of the modulation grating is nearly a half of the depth of the fundamental grating.  相似文献   

5.
Jinyu Sun 《Optics Communications》2011,284(19):4745-4748
Noncollinear optical parametric up-conversion generation and amplification are realized in a thick β-barium borate (BBO) crystal, and a couple of visible femtosecond up-conversion laser pulses can be achieved by a femtosecond pulse at 800 nm as the pump sources. The theoretical and experimental results indicate that there exist phase-matching conditions for dual-color noncollinear parametric up-conversion generation and amplification, and their wavelengths can be tuned by rotating the BBO crystal. This parametric up-conversion generation and amplification can be attributed to three and five-wave mixing in a thick BBO crystal, and it shows the potential application on optical parametric chirped pulse amplification (OPCPA) to generate multi-color ultraviolet or visible femtosecond laser pulses pumped directly by femtosecond fundamental laser pulses without frequency-doubling or tripling.  相似文献   

6.
飞秒激光脉冲与金属光阴极相互作用   总被引:1,自引:0,他引:1       下载免费PDF全文
刘运全  张杰  梁文锡 《中国物理》2005,14(8):1671-1675
本文从理论上分析了飞秒激光与光阴极相互作用过程,采用双温模型分析了飞秒激光脉冲辐照下金属薄膜的温度效应。通过建立一个简单的光电效应模型,获得了最佳的金属光阴极厚度,通过该模型可以发现,产生的光电流对在飞秒激光脉冲辐照下的电子温度和晶格温度有着很大的依赖关系。  相似文献   

7.
Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N × ?th(N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research.  相似文献   

8.
Perrin B  Péronne E  Belliard L 《Ultrasonics》2006,44(Z1):e1277-e1281
In picosecond ultrasonics experiments the absorption of a femtosecond laser pulse in a thin metallic transducer is used to generate very short acoustic pulses. These pulses are made of coherent longitudinal waves with a frequency spectrum that can reach 100-200 GHz. The laser pulse absorption gives rise to a heating of the film of a few Kelvin within a typical time of 1 ps. Later on, the heat goes in the substrate through an interface thermal resistance and is diffused by thermal conduction. At very low temperature and in pure crystals the thermal phonons emitted by the heated metallic film can propagate ballistically over large distances and produce a so-called heat pulse. We report on the experimental evidence of the coexistence of the coherent acoustic pulse and the incoherent heat pulse generated and detected by laser ultrasonics.  相似文献   

9.
Laser material processing of dielectrics with temporally asymmetric femtosecond laser pulses of identical fluence, spectrum, and statistical pulse duration is investigated experimentally. To that end single shot structures at the surface of fused silica as a function of fluence and pulse shape are analyzed with the help of scanning electron microscopy. Structures for the bandwidth limited pulses show the known expansion in structure size with increasing laser fluence approaching the diffraction limit, which is 1.4 μm for the 0.5NA microscope objective used. In contrast, structures from the asymmetric pulses are remarkably stable with respect to variations in laser fluence and stay below 300 nm despite doubling the fluence. Different thresholds for surface material modification with respect to an asymmetric pulse and its time reversed counterpart are attributed to control of different ionization processes.  相似文献   

10.
卞华栋  戴晔  叶俊毅  宋娟  阎晓娜  马国宏 《物理学报》2014,63(7):74209-074209
本文通过数值模拟(3+1)维扩展的广义非线性薛定谔方程,研究了紧聚焦飞秒激光脉冲在诱导石英玻璃的非线性电离过程中电子动量弛豫时间对于该电离过程的影响.计算结果证明电子动量弛豫时间会直接影响入射脉冲在焦点区域所形成的峰值场强、自由电子态密度和能流等参量的分布态势,因此在与实验结果相比较后发现适合于相互作用过程的电子动量弛豫时间的理论值约为1.27 fs.进一步的研究表明,电子动量弛豫时间与逆韧致吸收效应、雪崩电离的概率、等离子体密度、等离子体的自散焦效果以及间接引起的焦平面位置的移动都有着密切的联系.当前的研究结果表明电子动量弛豫时间在飞秒激光脉冲与物质相互作用的过程中发挥着重要作用.  相似文献   

11.
The surface plasmon resonance (SPR) for spectral modulation of the femtosecond laser pulses with 110 nm ultra-broad bandwidth is demonstrated on the basis of the development of ultrashort pulse laser sources which supports good spatial resolution and high peak intensity. Employing the femtosecond surface plasmon polariton pulses launched by a Kretschmann configuration, whose reflectivity curve has the characteristic of the ultra-broad bandwidth, we observe a frequency-dependent loss with greater attenuation at the peak of the spectrum profile than in the wings, which is very useful for adequate spectral modulation. The SPR for the spectral modulation is investigated in theoretical and experimental aspects. The arbitrary spectral modulation of the femtosecond laser pulses can be fulfilled by controlling and optimizing the SPR of the gold film. The experimental result agrees well with the calculation.  相似文献   

12.
Picosecond acoustic pulses generated by femtosecond laser excitation of a metal film induce a transient current with subnanosecond rise time in a GaAs/Au Schottky diode. The signal consists of components due to the strain pulse crossing the edge of the depletion layer in the GaAs and also the GaAs/Au interface. A theoretical model is presented for the former and is shown to be in very good agreement with the experiment.  相似文献   

13.
Nano- and microscale holes, as well as related sub-ablative nanospikes and sub-micron bumps, were produced in a 30-nm thick silver film on a silica substrate by single femtosecond laser pulses with variable pulse energies, focused by different strong focusing optics. Characteristic laser energy deposition dimensions exceed the expected focal spots by nearly 2 microns, indicating the considerable lateral thermal transport in the film, while the effective hole formation thresholds decrease versus increasing numerical aperture of focusing optics. Morphologies of the sub-ablative solidified surface nanostructures and numerical estimates of deposited volume energy density undermine blowing-off the molten film due to subsurface boiling and near-critical phase explosion at lower and higher sub-threshold fluences, respectively.  相似文献   

14.
Nanobumps and nanoholes have been formed in gold and silver films with various thicknesses on a dielectric substrate by strongly focused single nanosecond pulses of a Nd:YAG laser. An apertureless dielectric fiber probe and an aspherical lens with a numerical aperture of 0.5 were used to focus laser radiation into a diffraction-limited spot on the surface of gold and silver films, respectively. Atomic force and electron microscopy studies have demonstrated that the shape and dimension of nanostructures, as well as the threshold parameters of laser radiation for their formation, are determined by the thickness of a modified film (“size effect”) and by the duration of a laser pulse owing to the lateral heat conduction in films (nonlocal energy deposition effect). Mechanisms of the dynamic formation of such structures in metallic films by nanosecond laser pulses due to phase transformations of their material have been discussed.  相似文献   

15.
实验研究了线偏振和圆偏振状态下的飞秒强激光脉冲在块状材料中的传输过程。不同偏振的激光脉冲在传输过程中得到了不同程度的光谱展宽,经色散补偿后,脉冲时域宽度均得到了压缩。详细分析了压缩脉冲的脉宽以及啁啾情况与入射激光脉冲能量之间的关系,比较了飞秒激光在线偏振及圆偏振情况下的不同压缩效果。在线偏振入射光情况下得到了最短21fs的压缩脉冲宽度,在圆偏振情况下得到的最短脉冲宽度为22fs。实验结果表明,这种光谱展宽与色散补偿方式对圆偏振光同样适用,而且圆偏振的入射激光将更有利于对更高能量的脉冲进行压缩。在色散补偿量相同的情况下,压缩效果随入射脉冲能量变化的规律符合理论估计。  相似文献   

16.
Results of experimental and theoretical investigations on generation of terahertz radiation at the interaction of femtosecond laser pulses with a metal surface are presented. Investigations are performed with the laser pulse intensities higher compared with that used in papers [Opt. Lett.29, 2674 (2004); Opt. Lett.30, 1402 (2005)]. The most effective generation is observed for p-polarized optical pulses with incidence angles in the range 5°-10° (from the surface), depending on the kind of metal. For the copper, the exponential growth of terahertz pulse energy with the increase of optical pulse energy was registered. Theoretical interpretation for some of the experimental results is proposed based on the model of free electrons in metal.  相似文献   

17.
对飞秒激光脉冲在透明介质中产生微爆的物理机制进行了研究,比较了长短激光脉冲的光击穿机制,基于Fokker-Planck方程建立了飞秒激光微爆模型,给出了飞秒激光脉冲在透明介质中产生微爆的阈值解析表达式.针对飞秒激光脉冲在熔石英介质中的微爆阈值进行了计算,得到的结果与实验结果基本相符.  相似文献   

18.
The THz radiation emission of Au-coated nanogratings (fused silica substrate, 30?nm Au layer thickness, 500?nm grating constant) upon fs laser irradiation (785?nm, 150?fs, 1?kHz,???1?mJ/pulse) is observed in both directions along the laser beam axis (forward and backward) and for both, illumination of the Au/air or the Au/silica interface. THz radiation along the laser beam propagation is emitted in a narrow solid angle of about 15°?fwhm independent on the laser pulse fluence, the angle of incidence and the nanograting profile. The bar width and groove depth of the nanograting as well as the angle of laser beam incidence strongly affect the THz radiation yield. The energy of single THz light pulses is measured absolutely (2?fJ in the 0.3?C0.38?THz range) using a highly sensitive and fast superconducting transition edge sensor. The bi-directional emission of THz radiation is in agreement with the model assumption of surface plasmon polaritons propagating simultaneously on both Au layer interfaces (Au/air and Au/silica).  相似文献   

19.
The frequency conversion of laser radiation in plasma created by pulses of different durations under conditions of the chirp variation of the radiation to be converted is investigated. It is shown that the chirp variation of the laser pulse during the generation of higher-order radiation harmonics of the femtosecond laser leads to a considerable change in the brightness, wavelength shift, and maximal order of generated harmonics. The long-and short-wavelength shifts of harmonics observed in these studies are attributed to the manifestation of a considerable concentration of free charge carriers in the plasma, as well as the self-modulation of the laser pulse. The generation of plasma by pulses whose durations vary from 160 fs to 20 ns is considered and it is shown that the generation efficiency of harmonics depends to a greater extent on the energy of the heating prepulse than on its intensity on the surface of a target to be ablated. The effect that the atomic number of the target has on the formation of optimal plasma at different delays between the heating prepulse and the femtosecond pulse to be converted is discussed.  相似文献   

20.
利用高重复频率(1kHz)、吉瓦级飞秒激光脉冲实验验证了高强度飞秒脉冲在空气中的自 压缩现象,研究了入射脉冲在不同初始啁啾情况下经空气中聚焦成丝后,时域及频域特性随 入射脉冲能量的变化规律.实验结果表明,在无需后继色散补偿情况下,高强度飞秒脉冲仅 通过在空气中的非线性传输过程就可以实现脉冲压缩;在入射脉冲为负啁啾情况下,实验观 察到脉冲光谱及时域宽度同时得到压缩,并可获得比激光源所能提供的更短的近双曲正割型 变换限脉冲. 关键词: 高强度飞秒激光脉冲 自压缩 自聚焦  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号