首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effectiveness of dairy treated wastewater (TWW) was evaluated, in comparison with tap water (TW), on a Tunisian olive orchard (Olea europea, cv Chemlali), irrigated manually (MI) and by surface dripping (SDI). To this purpose, tree growth, biomass and fruiting were monthly tested for a one-year period. Similar trunk diameters, nodes/tree, root lengths were obtained, independently of source and system of irrigation. Also, comparable tree length and leaf area, shoots/tree and biomass, were observed between TWW and TW plants. However, such parameters improved under SDI rather than MI. Fruiting occurred only in TWW and TW trees treated by MI. Concerning growth, biomass and fruiting, TWW represented a valid alternative source for the irrigation of olive orchard, especially in Tunisia, already facing the freshwater scarcity. Monitoring of soil, TWW, fruits and oil will be required to validate the use of such effluent for olive orchard irrigation.  相似文献   

2.
Agroindustries usually produce high amounts of wastewaters and are frequently located close to agricultural activities. Agricultural use of treated wastewaters therefore represents a unique opportunity to solve the problem of water supply for irrigation and disposal of treated water at the same time. This article is the result of collaborative work with the biggest Chilean pisco-(a distillated drink prepared from Muscatel wine) producing company at present. Experiments were conducted to establish anaerobic treatability of wastewaters and also irrigation properties of treated water. With the purpose of confirming laboratory results, a full-scale anaerobic plant was built, and treated water is being used to irrigate 3000 eucalypti. The results showed, at both laboratory and full scale, that anaerobic treatment is suitable for the treatment of pisco wastewater, and that nutrient content of treated water can be beneficial for plant growth, reducing the need for fertilizers.  相似文献   

3.
In this work, the contributions of triclosan and its metabolite methyl triclosan to the overall acute toxicity of wastewater were studied using Vibrio fischeri. The protocol used in this paper involved various steps. First, the aquatic toxicities of triclosan and methyl triclosan were determined for standard substances, and the 50% effective concentrations (EC50) were determined for these compounds. Second, the toxic responses to different mixtures of triclosan, methyl triclosan, and surfactants were studied in different water matrices, i.e., Milli-Q water, groundwater and wastewater, in order to evaluate (i) the antagonistic or synergistic effects, and (ii) the influence of the water matrices. Finally, chemical analysis was used in conjunction with the toxicity results in order to assess the aquatic toxicities of triclosan and its derivative in wastewaters. In this study, the toxicities of 45 real samples corresponding to the influents and effluents from eight wastewater treatment works (WWTW) were analyzed. Thirty-one samples were from a wastewater treatment plant (WWTP) equipped with two pilot-scale membrane bioreactors (MBR), and the influent and the effluent samples after various treatments were characterized via different chromatographic approaches, including solid-phase extraction (SPE), liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), and SPE coupled to gas chromatography–mass spectrometry (GC–MS). The toxicity was determined by measuring the bioluminescence inhibition of Vibrio fischeri. In order to complete the study and to extrapolate the results to different WWTPs, the toxicity to V. fischeri of samples from seven more plants was analyzed, as were their triclosan and methyl triclosan concentrations. Good agreement was established between the overall toxicity values and concentrations of the biocides, indicating that triclosan is one of the major toxic organic pollutants currently found in domestic wastewaters.  相似文献   

4.
A procedure is developed for the determination of organic amines in potable water and wastewater by capillary electrophoresis. A mixed solution of benzimidazole and tartaric acid is selected as a leading electrolyte for indirect photometric detection. The sample was injected hydrodynamically. The procedure was tested on samples of potable water and wastewater. The accuracy of the results was evaluated by the standard addition method. The analytical range is 0.25–5 mg/L. The analysis time is 4–5 min.  相似文献   

5.
A method for the identification of toxic compounds in industrial wastewater is presented, consisting of sequential solid phase extraction (SPE), fractionation by HPLC and GC-MS for compound identification. All analytical steps are accompanied by an automated detection of the aquatic toxicity by luminescence inhibition of Vibrio fischeri, which helps to reduce the large number of samples and subsamples that have to be processed by exluding those without toxic effects. The advantages of this procedure in comparison to previous methods of toxicity directed water analysis are discussed. The procedure was successfully applied to various samples of tannery wastewater, showing that benzothiazoles account for the major toxicity of tanyard wastewater. For very polar wastewater constituents, such as in beamhouse wastewaters, the use of LC-MS/MS for the final compound identification is suggested. Received: 25 September 1998 / Revised: 20 November 1998 / Accepted: 26 November 1998  相似文献   

6.
A solid‐phase extraction combined with a liquid chromatography‐tandem mass spectrometry analysis has been developed and validated for the simultaneous determination of 44 pharmaceuticals belonging to different therapeutic classes (i.e., antibiotics, anti‐inflammatories, cardiovascular agents, hormones, neuroleptics, and anxiolytics) in water samples. The sample preparation was optimized by studying target compounds retrieval after the following processes: i) water filtration, ii) solid phase extraction using Waters Oasis HLB cartridges at various pH, and iii) several evaporation techniques. The method was then validated by the analysis of spiked estuarine waters and wastewaters before and after treatment. Analytical performances were evaluated in terms of linearity, accuracy, precision, detection, and quantification limits. Recoveries of the pharmaceuticals were acceptable, instrumental detection limits varied between 0.001 and 25 pg injected and method quantification limits ranged from 0.01 to 30.3 ng/L. The precision of the method, calculated as relative standard deviation, ranged from 0.3 to 49.4%. This procedure has been successfully applied to the determination of the target analytes in estuarine waters and wastewaters. Eight of these 44 pharmaceuticals were detected in estuarine water, while 26 of them were detected in wastewater effluent. As expected, the highest values of occurrence and concentration were found in wastewater influent.  相似文献   

7.
A simple and rapid dispersive liquid–liquid microextraction method has been developed for the determination of 11 benzotriazoles and benzothiazoles in water samples. Tri-n-butylphosphate (TBP) was used as extractant, thus avoiding the use of toxic water-immiscible chlorinated solvents. The influence of several variables (e.g., type and volume of dispersant and extraction solvents, sample pH, ionic strength, etc.) on the performance of the sample preparation step was systematically evaluated. Analytical determinations were carried out by high-performance liquid chromatography with fluorescence and UV detection and liquid chromatography–electrospray ionization-tandem mass spectrometry. The optimized method exhibited a good precision level with relative standard deviation values between 3.7% and 8.4%. Extraction yields ranging from 67% to 97% were obtained for all of these considered compounds. Finally, the proposed method was successfully applied to the analysis of benzotriazoles and benzothiazoles in real water samples (tap, river, industrial waters, and treated and raw wastewaters).  相似文献   

8.
The presence of high strength fats and oils in dairy industry wastewaters poses serious challenges for biological treatment systems, and, therefore, its pretreatment is necessary in order to remove them. In the present study, synthetic dairy wastewater prepared in the laboratory was pretreated using the sophorolipid-producing yeast Candida bombicola in a laboratory-scale bioreactor under batch, fed-batch, and continuous modes of operation. To support the yeast growth, the wastewater was supplemented with sugarcane molasses (1% w/v) and yeast extract (0.1% w/v). Results from the batch operated fermentor revealed complete utilization of fats present in the wastewater within 96 h with more than 93% COD removal efficiency. The yeast was, however, able to pretreat the wastewater more quickly and efficiently under fed-batch mode of operation than under batch operated condition in the same fermentor. Continuous experiments were carried out with a wastewater retention time of 28 h in the reactor; results showed very good performance of the system in complete utilization of fats and COD removal efficiency of more than 90%. The study proved the excellent potential of the biosurfactant-producing yeast in pretreating high-fat- and oil-containing dairy industry wastewater.  相似文献   

9.
A method was developed for viable and rapid determination of seven polychlorinated biphenyls (PCBs) in water samples with vortex-assisted liquid-liquid microextraction (VALLME) using gas chromatography-mass spectrometry (GC-MS). At first, the most suitable extraction solvent and extraction solvent volume were determined. Later, the parameters affecting the extraction efficiency such as vortex extraction time, rotational speed of the vortex, and ionic strength of the sample were optimized by using a 2(3) factorial experimental design. The optimized extraction conditions for 5 mL water sample were as follows: extractant solvent 200 μL of chloroform; vortex extraction time of 2 min at 3000 rpm; centrifugation 5 min at 4000 rpm, and no ionic strength. Under the optimum condition, limits of detection (LOD) ranged from 0.36 to 0.73 ng/L. Mean recoveries of PCBs from fortified water samples are 96% for three different fortification levels and RSDs of the recoveries are below 5%. The developed procedure was successfully applied to the determination of PCBs in real water and wastewater samples such as tap, well, surface, bottled waters, and municipal, treated municipal, and industrial wastewaters. The performance of the proposed method was compared with traditional liquid-liquid extraction (LLE) of real water samples and the results show that efficiency of proposed method is comparable to the LLE. However, the proposed method offers several advantages, i.e. reducing sample requirement for measurement of target compounds, less solvent consumption, and reducing the costs associated with solvent purchase and waste disposal. It is also viable, rapid, and easy to use for the analyses of PCBs in water samples by using GC-MS.  相似文献   

10.
226Ra is a member of the 238U natural decay series and is one of the most important isotope to be determined among the naturally occurring nuclides in environmental samples. In order to evaluate the radiation dose from 226Ra, it is important to know its mobility in different types of soils. The aim of the present study is to quantify the influence of physico-chemical soil properties on 226Ra adsorption. The distribution coefficients (K d-value) of 226Ra in Selangor soil series samples were measured in one core, at three depth levels to evaluate the adsorbability of 226Ra. The soil samples were spiked with 226Ra tracer and the activities of 226Ra in the separated phase from batch sorption test were measured by a low background but high efficiency well-type HPGe detector. Several physico-chemical soil properties were also characterised for each soil samples. Pearson’s correlation and stepwise multiple regression test were applied at the 0.05 level of significance throughout all analysis to determine the relationships and influences between distribution coefficients (K d-value) of 226Ra with physicochemical soil properties for the Selangor soil series. The observed K d value was in the range of 50.55–172.28 mL g−1 (mean: 93.20 ± 46.99 mL g−1). The regression showed that the highest positive correlations were observed for organic matter (OM) and cation exchange capacity (CEC) (r = 0.96**, 0.81**, respectively) with K d-values. The results indicate that the stepwise multiple regression model incorporating the soil’s OM and CEC accounts for 98% of the variability in distribution coefficients of 226Ra.  相似文献   

11.
A method for the identification of toxic compounds in industrial wastewater is presented, consisting of sequential solid phase extraction (SPE), fractionation by HPLC and GC-MS for compound identification. All analytical steps are accompanied by an automated detection of the aquatic toxicity by luminescence inhibition of Vibrio fischeri, which helps to reduce the large number of samples and subsamples that have to be processed by exluding those without toxic effects. The advantages of this procedure in comparison to previous methods of toxicity directed water analysis are discussed. The procedure was successfully applied to various samples of tannery wastewater, showing that benzothiazoles account for the major toxicity of tanyard wastewater. For very polar wastewater constituents, such as in beamhouse wastewaters, the use of LC-MS/MS for the final compound identification is suggested.  相似文献   

12.
Calorimetric studies of solid wastes, sewage sludge, wastewaters and their environmental effects focus on three main research areas. The first research area involves determination of selected thermal and physical parameters characterizing the above substances, such as specific heat, thermal conductivity and others. The second area covers processes of total or gradual destruction of the examined substances at a fixed composition of the gaseous phase. The methods applied in this case enable to determine the heat of combustion or the calorific value of the analyzed material, as well as changes in the rate of heat production, measured by differential scanning calorimetry (DSC). The third area of calorimetric studies covers microbial calorimetry as a method for non-destructive monitoring of organic matter biodegradation in order to measure the kinetic and thermodynamic parameters of the investigated processes, i.e., wastewater treatment, composting and decomposition of organic soil matter, as well as to determine the stability of wastes. This paper describes, based on available literature data, the major directions of investigations, using different calorimetric methods, of solid wastes, sewage sludge and wastewaters and additionally their effects on soil microbial processes. The paper also presents the selected calorimetric studies and analyses the biodegradation kinetics of organic wastewaters and glucose decomposition in the presence of phosphogypsum in different soils.  相似文献   

13.
A pilot-survey study was performed by collecting samples (influent and effluent wastewaters, rivers and tap waters) from different locations in Europe (Spain, Belgium, Germany and Slovenia). A solid-phase extraction (SPE) followed by liquid chromatography–tandem mass spectrometry method was applied for the determination of pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid). Method detection limits and method quantification limits were at the parts-per-trillion level (7.5–75 ng/L). The recovery rates of the SPE from deionized water and effluent wastewater samples spiked at 100- and 1,000-ng/L levels ranged from 87 to 95%. Identification criteria in compliance with the EU regulation for confirmatory methods of organic residues were applied. A detailed study of signal suppression evaluation for analysis of pharmaceutical residues in effluent wastewaters is presented.  相似文献   

14.
The presence of pharmaceuticals in the environment is a matter of major concern because of their wide consumption and their potential negative effect on the water quality and living organisms. After human and/or veterinary consumption, pharmaceuticals can be excreted in unchanged form as the parent compound and/or as free or conjugated metabolites. These compounds seem not to be completely removed during wastewater treatments and might finally arrive to surface and ground waters. Consequently, both parent pharmaceuticals and metabolites are target analytes to be considered in analytical methodologies. The satisfactory sensitivity in full-acquisition mode, high-resolution, exact mass measurements and MS/MS capabilities of hybrid quadrupole time-of-flight (QTOF) mass spectrometry make of this technique a powerful analytical tool for the identification of organic contaminants. In this study, the use of QTOF-MS with the aid of specialised processing-data application managers has allowed the retrospective analysis of pharmaceuticals metabolites in urban wastewater without the need for additional injection of sample extracts. Around 160 metabolites have been investigated in wastewater samples previously analysed only for parent compounds using LC-QTOF under MS(E) mode (simultaneous recording of two acquisition functions, at low and high collision energy). The retrospective analysis was applied to search for pharmaceutical metabolites in parent-positive effluent wastewaters from the Spanish Mediterranean region. Five metabolites, such as clopidogrel carboxylic acid or N-desmethyl clarithromycin, were identified in the samples.  相似文献   

15.
Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels of Pb viz. 0, 10, 20, 40, 80, 160 μg·g−1 were applied in these soils, and the results showed that an increase of the amount of Pb2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system.  相似文献   

16.
Environmental concerns have increased the interest in winery wastewater remediation and reuse. These practices require more detailed understanding of wastewater composition to ensure optimum usage, and to minimize the risk of long term soil degradation and grape contamination. Particulate organic matter is an important contributor to the carbon burden in winery wastewaters. This article investigates the molecular structure of particulates from the most common winery wastewater treatment processes via infrared spectroscopic and thermochemolysis-gas chromatography/mass spectrometry techniques. Study of the organic composition of both influent and effluent particles enabled further insight into which compounds could prove problematic during treatment and on discharge. The yield and molecular structure of desorbed or “guest” compounds were found to strongly correlate with those produced during pyrolytic cracking. These “guest” compounds and macromolecular fragments form a continuum whose separation is based on molecular size. Polyphenolic and lignin derived compounds tended to survive the water treatment processes within assemblages of microbial detritus. No evidence was found for particles adsorbing and concentrating other unrelated organics such as anthropogenic chemicals from winery wastewaters. Any release of particulates will require careful management to prevent localized accumulation of recalcitrant compounds to toxic levels.  相似文献   

17.
Abstract

A comparison of gas-liquid chromatography, differential-pulse polarography and a colorimetric method for the determination of nitrilotriacetic acid in settled sewage, sewage effluent, potable water, soil extracted water and deionised water has been undertaken. Differential-pulse polarography has also been applied to the determination of nitrilotriacetic acid in saline samples. By statistical analysis of replicate determinations, accuracy and precision have been evaluated, and calibration linearity assessed. Interferences were observed for sewage samples when analysed by all three methods. Precision was generally higher for differential-pulse polarography down to 100 μgl?1, although only gas-liquid chromatography is applicable to concentrations below 25μgl?1 in non-saline samples. The colorimetric method was not applicable to concentrations below 500 μgl?1 of nitrilotriacetic acid.  相似文献   

18.
The present study firstly aimed at developing a multi-residue method to identify and quantify 38 veterinary antibiotics (belonging to five different classes) not only for raw swine wastewater but also for wastewater differently treated by different units. The proposed method is based on a solid-phase extraction procedure and ultra high performance liquid chromatography with mass spectrometry. For sample preparation, the optimal loading sample volume was selected as 50 mL, the pH of which was adjusted to approximately 3.0 using formic acid. Then 0.1 g/L ethylenediaminetetraacetic acid disodium salt was added. The recovery rates for different types of wastewaters were in the range of 35.94–124.51% and the relative standard deviations were in the range of 0.36–14.62%. All the matrix standard curves exhibited high linearity (0.9956–0.9999). The matrix effects for the target antibiotics ranged from –61.73 to +148.75%. To ensure the practicality of the method, we performed the detection of the actually added concentration to determine method detection limits and quantitation limits. The quantitation limits of most of the target antibiotics were 0.04 μg/L, except for spiramycin (0.1 μg/L) and roxithromycin (0.2 μg/L). This optimized and validated method was applied to analyze antibiotic residues in swine water samples from four swine farms.  相似文献   

19.
A method is described for the determination of 90Sr in environmental samples using combination of developed in-house method, Eichrom Sr resin and Beta Counter. Strontium was efficiently, rapidly and simply separated from Ca and other interfering matrix components by Eichrom Sr resin. All the results in general showed good accuracy, high precision, reliable and in good agreement between these two measured and certified value of SRM (i.e. IAEA-375, IAEA-326, IAEA-152 and IAEA-414). As a whole, the procedure described in this work notably improves conventional methods in particular concerning the time needed, sample volume, safer and others. Thus, the introduced method was successfully performed and will be applied to actual sample for the determination of 90Sr in different environmental materials such as soil, sediments, milk, biological sample, water etc.  相似文献   

20.
Polyhydroxyalkanoates (PHAs) represent an environmentally effective alternative to synthetic thermoplastics; however, current production practices are not sustainable. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing real wastewaters and mixed microbial consortia from municipal activated sludge as inoculum. Polymer production reached 85, 53, and 10% of the cell dry weight from methanol-enriched pulp and paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. Using denaturing gradient gel electrophoresis of 16S-rDNA from polymerase chain reaction-amplified DNA extracts, distinctly different communities were observed between and within wastewaters following enrichment. Most importantly, functional stability was maintained despite differing and contrasting microbial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号