首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evaluation of the substrate scope for Pd(II)/ (-)-sparteine catalyzed aerobic oxidative kinetic resolution of secondary alcohols is disclosed. An improved system is found with use of tert-butyl alcohol solvent in which benzylic and aliphatic alcohols as well as alcohols containing olefins are effectively oxidatively resolved. For substrates that successfully undergo oxidative kinetic resolution, k(rel) values are generally between 10 and 20. Successful scale-up of various substrates to 10-mmol scale is described. Extension to oxidative desymmetrization of 1,3-meso-diols is successful with enantiomeric excesses ranging from 78 to 85%.  相似文献   

2.
The coordination chemistry of the bidentate P,N hybrid ligand 2-(2'-pyridyl)-4,6-diphenylphosphinine (1) towards Pd(II) and Pt(II) has been investigated. The molecular structures of the complexes [PdCl(2)(1)] and [PtCl(2)(1)] were determined by X-ray diffraction, representing the first crystallographically characterized λ(3)-phosphinine-Pd(II) and -Pt(II) complexes. Both complexes reacted with methanol at the P=C double bond at an elevated temperature, leading to the corresponding products [MCl(2)(1H·OCH(3))]. The molecular structure of [PdCl(2)(1H·OCH(3))] was determined crystallographically and revealed that the reaction with methanol proceeds selectively by syn addition and exclusively to one of the P=C double bonds. Strikingly, the reaction of [PdCl(2)(1H·OCH(3))] with the chelating diphosphine DPEphos at room temperature in CH(2)Cl(2) led quantitatively to [PdCl(2)(DPEphos)] and phosphinine 1 by elimination of CH(3)OH and rearomatization of the phosphorus heterocycle.  相似文献   

3.
In the presence of secondary alcohols, electrospray ionization of dilute methanolic solutions of nickel(II) salts and 1,1'-bis-2-naphthol (BINOL) leads to complexes of the formal composition [(BINOLato)Ni(CH3CH(OH)R)]+ (BINOLato refers to a singly deprotonated (R)- or (S)-1,1'-bis-2-naphthol ligand; R=CH3, C2H5, n-C3H7, n-C4H9, n-C5H11, n-C6H13, c-C6H11, and C6H5). Upon collision-induced dissociation, each mass-selected nickel complex either loses the entire secondary alcohol ligand or undergoes bond activation followed by elimination of the corresponding ketone, as revealed by deuterium labeling. When enantiomeric BINOLato ligands (R or S) are combined with chiral secondary alcohols (R or S), differences in the branching ratios between these channels for the two stereoisomers of the secondary alcohols provide insight into the chiral discrimination operative in the C--H- and O--H-bond activation processes. For saturated alkan-2-ols, the chiral discrimination is low, and if any preference is observed at all, ketone elimination from the homochiral complexes (R,R and S,S) is slightly favored. In contrast, the diastereomeric (BINOLato)Ni+ complexes of 1-phenylethanol exhibit preferential ketone losses for the heterochiral systems (S,R and R,S).  相似文献   

4.
5.
The mechanism by which [Cu(II)(L)](OTf)2 and [Cu(II)N3(L)](OTf) (L = TEPA: tris(2-pyridylethyl)amine or TMPA: tris(2-pyridylmethyl)amine; OTf = trifluoromethanesulfonate) react with superoxide (O2*-) to form [Cu(I)(L)](OTf) and O2 is described. Evidence for a CuO2 intermediate is presented based on stopped-flow experiments and competitive oxygen (18O) kinetic isotope effects on the bimolecular reactions of (16,16)O2*- and (18,16)O2*- ((16,16)k/(18,16)k). The (16,16)k/(18,16)k fall within a narrow range from 0.9836 +/- 0.0043 to 0.9886 +/- 0.0078 for reactions of copper(II) complexes with different coordination geometries and redox potentials that span a 0.67 V range. The results are inconsistent with a mechanism that involves either rate-determining O2*- binding or one-step electron transfer. Rather a mechanism involving formation of a CuO2 intermediate prior to the loss of O2 in the rate-determining step is proposed. Calculations of similar inverse isotope effects, using stretching frequencies of CuO2 adducts generated from copper(I) complexes and O2, suggest that the intermediate has a superoxo structure. The use of 18O isotope effects to relate activated oxygen intermediates in enzymes to those derived from inorganic compounds is discussed.  相似文献   

6.
RuX2(DMSO)4 (X=Cl,cis; Br,trans) undergoes ligand substitution in N,N-dimethylformamide (DMF) to give RuX2(DMSO)3DMF, which catalyzes the oxidation of secondary alcohols by NMO to ketones. Kinetics of the reaction catalyzed bytrans-RuBr2(DMSO)4 differed from that ofcis-RuCl2(DMSO)4. A mechanism is proposed involving the formation of Ru(IV)oxo species as the active intermediate and a rate expression is derived.  相似文献   

7.
Catalytic enantioselective epoxidation of homoallylic alcohols using Zr(Ot-Bu)(4) and tartrate ester (or tartramide) has been developed. In the Zr(Ot-Bu)(4)/diisopropyl tartrate-catalyzed epoxidation, the reverse of the enantiofacial preference was observed, depending on the Zr/ligand ratios of 1:1 or 1:2. [reaction--see text]  相似文献   

8.
Li YY  Zhang XQ  Dong ZR  Shen WY  Chen G  Gao JX 《Organic letters》2006,8(24):5565-5567
Chiral diaminodiphosphine-Ir(I) complexes were found to efficiently catalyze enantioselective oxidation of racemic secondary alcohols in acetone. In the presence of base, oxidative kinetic resolution of the alcohols proceeded smoothly with excellent enantioselectivity (up to 98% ee) under mild conditions. [reaction: see text].  相似文献   

9.
David J. Michaelis 《Tetrahedron》2009,65(26):5118-1726
We report an oxaziridine-mediated enantioselective aminohydroxylation of olefins catalyzed by a chiral copper(II) bis(oxazoline) complex. A variety of styrenic olefins undergo efficient aminohydroxylation with excellent regioselectivity and synthetically useful levels of enantioselectivity (up to 84% ee). The reaction can be conducted on multi-gram scale with as little as 2 mol % of the copper(II) catalyst. Hydrolysis of the resulting 1,3-oxazolines under acidic conditions produces N-sulfonyl amino alcohols that can be purified by recrystallization to afford very high levels of enantioselectivity.  相似文献   

10.
Powerful reductants [Os(II)(NH(3))(5)L](2+) (L = OH(2), CH(3)CN) can be generated upon ultraviolet excitation of relatively inert [Os(II)(NH(3))(5)(N(2))](2+) in aqueous and acetonitrile solutions. Reactions of photogenerated Os(II) complexes with methyl viologen to form methyl viologen radical cation and [Os(III)(NH(3))(5)L](3+) were monitored by transient absorption spectroscopy. Rate constants range from 4.9 × 10(4) M(-1) s(-1) in acetonitrile solution to 3.2 × 10(7) (pH 3) and 2.5 × 10(8) M(-1) s(-1) (pH 12) in aqueous media. Photogeneration of five-coordinate Os(II) complexes opens the way for mechanistic investigations of activation/reduction of CO(2) and other relatively inert molecules.  相似文献   

11.
Aiming at the generation of a silanone intramolecularly bound to platinum, we prepared pincer-type PSiP silanol Pt(II) complexes. While a stable silanone complex was not isolated, unusual reactivity modes, involving its possible intermediacy, were observed. Treatment of the new PSiH 2P-type ligand ( o-IPr 2PC 6H 4) 2SiH 2 ( 7) with (Me 2S) 2Pt(Me)Cl yields the pincer-type hydrosilane complex [{( o- iPr 2PC 6H 4) 2SiH}PtCl] ( 8), which upon Ir(I)-catalyzed hydrolytic oxidation gives the structurally characterized silanol complex [{( o- iPr 2PC 6H 4) 2SiOH}PtCl] ( 3). Complex 3, comprising in its structure the nucleophilic silanol fragment and electrophilic Pt(II)-Cl moiety, exhibits dual reactivity. Its reaction with the non-nucleophilic KB(C 6F 5) 4 in fluorobenzene leads to the ionic complex [{( o- iPr 2PC 6H 4) 2SiOH}Pt] (+) [(C 6F 5) 4B] (-) ( 9), which reacts with CO to yield the structurally characterized [{( o- iPr 2PC 6H 4) 2SiOH}PtCO] (+) [(C 6F 5) 4B] (-) ( 10). Treatment of 3 with non-nucleophilic bases leads to unprecedented rearrangement and coupling, resulting in the structurally characterized, unusual binuclear complex 11. The structure of 11 comprises two different fragments: the original O-Si-Pt(II)-Cl pattern, and the newly formed silanolate Pt(II)-H pattern, which are connected via a disiloxane bridge. Complex 9 undergoes a similar hydrolytic rearrangement in the presence of iPr 2NEt to give the mononuclear silanolate Pt(II)-H complex 17. Both these rearrangement-coupling reactions probably involve the inner-sphere generation of an intermediate silanone 14, which undergoes nucleophilic attack by the starting silanol 3 to yield complex 11, or adds a water molecule to yield complex 17. X-ray diffraction studies of 3, 10, and 11 exhibit a very short Si-Pt bond length (2.27-2.28 A) in the neutral complexes 3 and 11 that elongates to 2.365 A in the carbonyl complex 10. A significantly compressed geometry of the silanolate platinum(II)-hydride fragment B of the binuclear complex 11 features a Pt(2)-O(2)-Si(2) angle of 100.4 (3) degrees and a remarkably short Pt(2)...Si(2) [2.884 (3) A] distance.  相似文献   

12.
A range of allylic alcohols can be selectively oxidised to either the corresponding epoxide or the enone in good yields using catalytic quantities of vanadyl or cobalt(II) alkyl phosphonate modified silicas, CoEPS3 and VOEPS3 and tert-butyl hydroperoxide.  相似文献   

13.
The molecular orientation, spatial distribution, and thermal behavior of the powerful chiral catalyst modifier precursor (S)-naphthylethylamine adsorbed on Pt[111] have been studied by NEXAFS, XPS, STM, and temperature programmed reaction. At 300 K, both in the presence and in the absence of coadsorbed hydrogen, the strongly tilted molecules do not form ordered arrays. These results constitute the first direct evidence against the template model and are at least consistent with the 1:1 interaction model of chiral induction in the enantioselective hydrogenation of alkyl pyruvates. Raising the temperature beyond 320 K (the temperature of enantioselectivity collapse) leads either to irreversible dimerization with hydrogen elimination or to dissociation of the ethylamine moiety, depending on whether coadsorbed H(a) is present. Either way, the stereogenic center is destroyed. These findings provide the first direct clue as to the possible origin of enantioselectivity collapse, by a mechanism not previously considered. When NEA and methyl pyruvate are coadsorbed in the presence of H(a), STM reveals entities that could correspond to a 1:1 docking complex between the prochiral reactant and the chiral modifier.  相似文献   

14.
Summary Reactivity trends are reported for aquation of tris(5-nitro-1,10-phenanthroline)iron(II) in ternary H2O-t-BuOH-polyethyleneglycol (PEG400) solvent media. Wavelengths of maximum absorption for the lowest energy charge-transfer band of dicyanobis(2-acetylpyridineoximato)-iron(II) are reported for the same series of ternary solvent mixtures. There is no overall correlation of rate constants with wavelength shifts, indicating that solvation effects in the two systems are not directly related.On leave from the Faculty of Science, Assiut University, Sohag, Egypt.  相似文献   

15.
The mono(amidinate) iron(ii) ferrate complex [{PhC(NAr)(2)}FeCl(micro-Cl)Li(THF)(3)] (1, Ar = 2,6-iPr(2)C(6)H(3)) was prepared and was found to undergo ligand redistribution in non-coordinating solvents to give the homoleptic [{PhC(NAr)(2)}(2)Fe] (2) as the only isolable product. Reaction of with alkylating agents also induces this redistribution, but the presence of pyridine allows isolation of the four-coordinate 14 VE monoalkyl complex [{PhC(NAr)(2)}FeCH(2)SiMe(3)(py)] (4). Generation of the 12 VE alkyl via pyridine abstraction from 4 by B(C(6)F(5))(3) again induced ligand redistribution. Attempts to trap a 12 VE alkyl species with CO led to the isolation of a dimeric Fe(0)-Li-ferrate complex (3) with a carbamoyl ligand, derived from CO insertion into the iron-amidinate bond.  相似文献   

16.
Potassium 2,5-di-tert-butyl-3,4-dimethylphospholide K(dtp) (9) was synthesised in 45 % yield from commercially available starting materials by using zirconacyclopentadiene chemistry. Reaction of the K salt of this bulky anion and of the previously described potassium 2,5-bis(trimethylsilyl)-3,4-dimethylphospholide K(dsp) (8) with SmI(2) in diethyl ether afforded the homoleptic samarium(II) complexes 7 and 6, respectively, whose solid-state structures, [[Sm(dtp)(2)](2)] (7 a) and [[Sm(dsp)(2)](2)] (6 a), are dimeric owing to coordination of the phosphorus lone pairs to samarium, as shown by X-ray crystallography. Reaction of 8 with TmI(2) in diethyl ether afforded [Tm(dsp)(2)(Et(2)O)], which could not be desolvated without decomposition. In contrast, the coordinated ether group of the solvate [Tm(dtp)(2)(Et(2)O)], obtained from 9 and TmI(2), could easily be removed by evaporation of the solvent and extraction with pentane at room temperature, and the monomer [Tm(dtp)(2)] (5) could be isolated and was characterised by X-ray crystallography. Presumably, steric crowding in 5 is too high for dimerisation to occur. Compound 5, the first Tm(II) homoleptic sandwich complex, is remarkably stable at room temperature in solution and did not noticeably react with nitrogen, in sharp contrast with other thulium(II) species. As expected, 5, 6 and 7 all reacted with azobenzene to give the trivalent complexes [Tm(dtp)(2)(N(2)Ph(2))] (13), [Sm(dsp)(2)(N(2)Ph(2))], (14) and [Sm(dtp)(2)(N(2)Ph(2))] (15), respectively; 13 and 14 were characterised by X-ray crystallography. Complex 5 immediately reacted with triphenylphosphane sulfide at room temperature to give [[Tm(dtp)(2)](2)(mu-S)] (16), which was characterised by X-ray crystallography, whereas samarium(II) complexes 6 and 7 did not noticeably react with Ph(3)PS over 24 h under the same conditions.  相似文献   

17.
The synthesis, structure, and reactivity of a series of low-coordinate Fe(II) diketiminate amido complexes are presented. Complexes L(R)FeNHAr (R = methyl, tert-butyl; Ar = para-tolyl, 2,6-xylyl, and 2,6-diisopropylphenyl) bind Lewis bases to give trigonal pyramidal and trigonal bipyramidal adducts. In the adducts, crystallographic and (1)H NMR evidence supports the existence of agostic interactions in solid and solution states. Complexes L(R)FeNHAr may be oxidized using AgOTf, and the products L(R)Fe(NHAr)(OTf) are characterized with (19)F NMR spectroscopy, UV/vis spectrophotometry, solution magnetic measurements, elemental analysis, and, in one case, X-ray crystallography. In the structures of the iron(III) complexes L(R)Fe(NHAr)(OTf) and L(R)Fe(OtBu)(OTf), the angles at nitrogen and oxygen result from steric effects and not pi-bonding. The reactions of the amido group of L(R)FeNHAr with weak acids (HCCPh and HOtBu) are consistent with a basic nitrogen atom, because the amido group is protonated by terminal alkynes and alcohols to give free H(2)NAr and three-coordinate acetylide and alkoxide complexes. The trends in complex stability give insight into the relative strength of bonds from three-coordinate iron to anionic C-, N-, and O-donor ligands.  相似文献   

18.
19.
Using the X-ray structure of solid nitrosoguanidine (ngH), potential structures of its complex with aqueous nickel(II) were surmised. A single-crystal X-ray diffraction determination of the Ni(II) complex confirmed one of these configurations. The X-ray structural parameters were compared with the most stable gaseous configurations derived from ab initio-MO calculations. The lowest energy calculated configuration of the nickel(II) complex and the X-ray crystal structure are in excellent agreement. The neutral diamagnetic, planar, red-colored [bis(nitrosoguanidate)nickel(II)] complex, [Ni(ng)2]°, is nitrogen coordinated in the trans configuration. It is highly insoluble in all solvents investigated, and has essentially the same crystal symmetry and unit-cell dimensions as the free ligand. In ligand crystals, two molecules have four nitrogen atoms aligned in a plane such that they are suitable for coordination to a nickel ion (1.945, 2.064?Å), when it is at the 1/2,?1/2,?1/2 unit-cell position. Furthermore, the complexes stack, as in [Ni(dmg)2]°, placing the nickel ions in nearly perfect positions for weak metal–metal bonding between adjacent layers at the near optimum distance of 3.65(1)?Å. This results in a tight, linear macromolecule having low volatility and the extremely low solubility observed. As far as we are aware this is the first instance in which a ligand crystal structure is essentially the same as the complex it forms, with minor differences in bond distances, angles and torsion angles, and suggests some potentially unique properties and applications for this material.  相似文献   

20.
The reaction between [Pt(nbe)3] (nbe=norbornene), two equivalents of the phosphines PPh3, PMePh2 or PMe2Ph and 1 equivalent of BCl3 affords the platinum dichloroboryl species [PtCl(BCl2)(PPh3)2], [PtCl(BCl2)(PMePh2)2] and [PtCl(BCl2)(PMe2Ph)2]. All three complexes were characterised by X-ray crystallography and reveal that the boryl group lies trans to the chloride. With PMe3 as the phosphine, the complex [PtCl(BCl2)(PMe3)2] is isolated in high yield as a white crystalline powder although crystals suitable for X-ray crystallography were not obtained. Crystals were obtained of a product shown by X-ray crystallography to be the unusual dinuclear species [Pt2(BCl2)2(PMe3)4(micro-Cl)][BCl4] which reveals an arrangement in which two square planar platinum(II) centres are linked by a single bridging chloride which is trans to a BCl2 group on each platinum centre. The reaction of [PtCl(BCl2)(PMe3)2] with NEt3 or pyridine (py) affords the adducts [PtCl{BCl2(NEt3)}(PMe3)2] and [PtCl{BCl2(py)}(PMe3)2], respectively, both characterised spectroscopically. The reaction between [PtCl(BCl2)(PMe3)2] and either 4 equivalents of NHEt2 or piperidine (pipH) results in the mono-substituted boryl species [PtCl{BCl(NEt2)}(PMe3)2] and [PtCl{BCl(pip)}(PMe3)2], respectively, the former characterised by X-ray crystallography. Treatment of either [PtCl(BCl2)(PMe3)2] (in the presence of excess NEt3) or [PtCl{BCl(NEt2)}(PMe3)2] with catechol affords the B(cat) (cat=catecholate) derivative [PtCl{B(cat)}(PMe3)2] which is also formed in the reaction between [Pt(PMe3)4] and ClB(cat) and also from the slow decomposition of [Pt{B(cat)}2(PMe3)2] in dichloromethane over a period of months. The compound [Pt{B(cat)}2(PMe3)2] was prepared from the reaction between [Pt(PMe3)4] and B2(cat)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号