首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Further development of an energy-minimization multiscale modeling approach to simulating two-phase flow under turbulent conditions that considers the size distribution of mesoscale structures, i.e. bubbles and clusters, is presented. User-defined values of minimum and maximum cluster or bubble diameters were specified. A uniform size distribution was first considered as a test case, in which the drag force comprised contributions from each size group. The mathematical form of the objective function describing the energy for suspension and transport was not altered. The heterogeneity index of this new drag modification was then used to simulate pilot-scale circulating fluidized-bed risers involving Geldart group A particles. The results were validated against available experimental data. The model is capable of capturing both axial and radial profiles of flow-field variables.  相似文献   

3.
4.
The pulsatile flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the peripheral region of plasma as a Newtonian fluid. The resulting non-linear implicit system of partial differential equations is solved using perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio, amplitude, pulsatile Reynolds number ratio and peripheral layer thickness are discussed. It is observed that the velocity distribution and flow rate decrease, while, the wall shear, width of the plug flow region and longitudinal impedance increase when the yield stress increases. It is also found that the velocity increases, but, the longitudinal impedance decreases when the thickness of the peripheral layer increases. The wall shear stress decreases non-linearly, while, the longitudinal impedance increases non-linearly when the catheter radius ratio increases. The estimates of the increase in the longitudinal impedance are considerably lower for the present two-fluid model than those of the single-fluid model.  相似文献   

5.
This paper presents a methodology for modeling slug initiation and growth in horizontal ducts. Transient two-fluid equations are solved numerically using a class of high-resolution shock capturing methods. The advantage of this method is that slug formation and growth in a stratified regime can be calculated directly from the solutions to the flow field differential equations. In addition, by using high-resolution shock capturing methods that do not contain numerical diffusion, the discontinuity generated by slugging in the flow field can be modeled with good accuracy. The two-fluid model is shown to be well-posed mathematically only under certain conditions. Under these circumstances, the two-fluid model is capable of correctly predicting and modeling the flow physics. When ill-posed, an unbounded instability occurs in the flow field solution, and the instability amplitude increases exponentially with decreasing mesh sizes. This work shows that there are three zones associated with slug formation. In addition, long wavelength slugs are shown to initiate from short wavelength waves. These short waves are generated at the interface of the two phases by the Kelvin-Helmholtz hydrodynamic instability. The results obtained through numerical modeling show good agreement with experimental results.  相似文献   

6.
In the present paper, the Fractional Step method usually used in single fluid flow is here extended and applied for the two-fluid model resolution using the finite volume discretization. The use of a projection method resolution instead of the usual pressure-correction method for multi-fluid flow, successfully avoids iteration processes. On the other hand, the main weakness of the two fluid model used for simulations of free surface flows, which is the numerical diffusion of the interface, is also solved by means of the conservative Level Set method (interface sharpening) (Strubelj et al., 2009). Moreover, the use of the algorithm proposed has allowed presenting different free-surface cases with or without Level Set implementation even under coarse meshes under a wide range of density ratios. Thus, the numerical results presented, numerically verified, experimentally validated and converged under high density ratios, shows the capability and reliability of this resolution method for both mixed and unmixed flows.  相似文献   

7.
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.  相似文献   

8.
-Ladd models. As a result, the proposed drag force model can be used as an efficient approach for the dense gas-solid two-phase flow.  相似文献   

9.
LBM-DEM耦合方法通常是指一种颗粒流体系统直接数值模拟算法,即是一种不引入经验曳力模型的计算方法,颗粒尺寸通常比计算网格的长度大一个量级,颗粒的受力通过表面的粘性力与压力积分获得,其优点是能描述每个颗粒周围的详细流场,产生详细的颗粒-流体相互作用的动力学信息,可以探索颗粒流体界面的流动、传递和反应的详细信息及两相相互作用的本构关系,但其缺点是计算量巨大,无法应用于真实流化床过程模拟。本文针对气固流化床中的流体以及固体颗粒间的多相流体力学行为,建立了一种稠密气固两相流的介尺度LBMDEM模型,即LBM-DEM耦合的离散颗粒模型,实现在颗粒尺度上流化床的快速离散模拟。该耦合模型采用格子玻尔兹曼方法(LBM)描述气相的流动和传递行为,离散单元法(DEM)用于描述颗粒相的运动,并利用能量最小多尺度(EMMS)曳力解决气固耦合不成熟问题,以提高其模拟精度。通过经典快速流态化的模拟,验证了介尺度LBM-DEM耦合模型的有效性。模拟结果表明介尺度LBM-DEM模型是一种探索实验室规模气固系统的有力手段。  相似文献   

10.
in the turbulent fiuidization of FCC particles, and was validated by satisfactory agreement between prediction and experiment.  相似文献   

11.
《力学快报》2020,10(4):213-223
Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines. Friction factors play an important role in the accurate calculation of pressure drop. Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall, gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions. In this paper by modification of a friction model available in the literature, an improved semiempirical model is proposed. The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved. Pressure gradient and velocity profiles are validated against experimental data. Using the improved model, the pressure gradient deviation from experiments diminishes by about 3%; the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.  相似文献   

12.
Blood flow through a catheterized artery is analyzed, assuming the flow is steady and blood is treated as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the plasma in the peripheral region as a Newtonian fluid. The expressions for velocity, flow rate, wall shear stress and frictional resistance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio and peripheral layer thickness are discussed. It is noticed that the velocity and flow rate decrease while the wall shear stress and resistance to flow increase when the yield stress or the catheter radius ratio increases while all the other parameters were held fixed. It is found that the velocity and flow rate increase while the wall shear stress and frictional resistance decrease with the increase of the peripheral layer thickness. The estimates of the increase in the frictional resistance are significantly very small for the present two-fluid model than those of the single-fluid Casson model.  相似文献   

13.
室内空气流动数值模拟的N点风口动量模型   总被引:7,自引:0,他引:7  
为适应工程应用中快速、准确模拟室内空气流动的需要,提出N点风口动量模型,以简化描述利用计算流体动力学CFD方法模拟室内空气流动时百叶、多孔板类送风口的入流边界条件。百叶和多孔板风口的等温自由射流算例以及HESCO孔板类散流器在室内送风的算例和实验数据对比表明,N点风口动量模型可以较好地解决数值模拟室内空气流动的风口入流边界条件描述问题。  相似文献   

14.
In this work it is presented a transient, one-dimensional, adiabatic model for slug flow simulation, which appears when liquid (mixture of oil and water) and gas flow simultaneously through pipes. The model is formed by space and time averaged conservation equations for mass, momentum and energy for each phase, the numerical solution is based on the finite difference technique in the implicit scheme. Velocity, pressure, volumetric fraction and temperature profiles for both phases were predicted for inclination angles from the horizontal to the vertical position (unified model) and ascendant flow. Predictions from the model were validated using field data and ten correlations commonly used in the oil industry. The effects of gas heating or cooling, due to compression and expansion processes, on the predictions and numerical stability, were studied. It was found that when these effects are taken into account, a good behavior of temperature predictions and numerical stability are obtained. The model presents deviations lower than 14% regarding field data and it presents better predictions than most of the correlations.  相似文献   

15.
Assessment of the kinetic-frictional model for dense granular flow   总被引:1,自引:0,他引:1  
This paper aims to quantitatively assess the application of kinetic-frictional model to simulate the motion of dry granular materials in dense condition, in particular, the annular shearing in Couette configuration. The weight of frictional stress was varied to study the contribution of the frictional stress in dense granular flows. The results show that the pure kinetic-theory-based computational fluid dynamics (CFD) model (without frictional stress) over-predicts the dominant solids motion of dense granular flow while adding frictional stress [Schaeffer, D. G. (1987). Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations, 66(1), 19-50] with the solids pressure of [Lun, C. NTK., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. Journal of Fluid Mechanics, 140, 223-256] in the CFD model improves the simulation to better conform available experimental results. The results also suggest that frictional stress transmission plays an important role in dense granular flow and should not be neglected in granular flow simulations. Compatible simulation results to the experimental data are seen by increasing the weight of frictional stress to a factor of 1.25-1.5. These improved simulation results suggest the current constitutive relations (kinetic-frictional model) need to be improved in order to better reflect the real dense granular flow.  相似文献   

16.
基于近壁定常剪切应力假设,提出了一种新的适用于浸入边界法的大涡模拟紊流壁面模型。通过引入壁面滑移速度,修正了线性速度剖面计算得到的壁面剪切应力,使之满足Werner-Wengle模型。将其应用于平板紊流和高Re数圆管紊流的数值模拟,对比采用和不采用壁面模型的结果得知,采用此模型的速度剖面与实验值吻合良好,验证了此模型的有效性。研究了不同欧拉/拉格朗日网格相对位置对结果的影响,证明了此模型具有较好的鲁棒性,以及可根据局部流动状态和网格精度自动开闭的特点。  相似文献   

17.
It is assumed in this paper that for a high Reynolds number nearly homogeneouswind flow, the Reynolds stresses are uniquely related to the mean velocity gradientsand the two independent turbulent scaling parameters k and E. By applying dimensionalanalysis and owing to the Cayley-Hamilton theorem for tensors, a new turbulenceenclosure model so-called the axtended k-ε model has been developed. The coefficientsof the model expression were detemined by the wind tunnel experimental data ofhomogeneous shear turbulent flow. The model was compared with the standard k-εmodel in in composition and the prediction of the Reynold’s normal Stresses. Using thenew model the numerical simulation of wind flow around a square cross-section tallbuilding was performed. The results show that the extended k-ε model improves theprediction of wind velocities around the building the building and wind pressures on the buildingenvelope.  相似文献   

18.
The microfluidic system is a multi-physics interaction field that has attracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper presents a thickness-averaged model to solve three-dimensional complex electroosmotic flows in a wide-shallow microchannel/chamber combined (MCC) chip based on the Navier-Stokes equations for the flow field and the Poisson equation to the electric field. Behaviors of the electroosmotic flow, the electric field, and the pressure are analyzed. The quantitative effects of the wall charge density (or the zeta potential) and the applied electric field on the electroosmotic flow rate are investigated. The two-dimensional thickness-averaged flow model greatly simplifies the three-dimensional computation of the complex electroosmotic flows, and correctly reflects the electrookinetic effects of the wall charge on the flow. The numerical results indicate that the electroosmotic flow rate of the thickness-averaged model agrees well with that of the three-dimensional slip-boundary flow model. The flow streamlines and pressure distribution of these two models are in qualitative agreement.  相似文献   

19.
在湍流数值模拟方法中,大涡模拟方法可以提供丰富的大涡旋信息,已逐渐成为复杂湍流问题数值研究的重要方法。而大涡模拟中,最重要的一环是尽量准确地构建能反映流场物理本质特征的亚格子应力模型。基于该思想,将一种新型的大涡模拟亚格子应力模型-Vreman亚格子应力模型用于高雷诺数三维后台阶流动的求解,计算结果与实验结果进行对比分析结果较吻合,验证了该模型的可靠性。这是对该模型用于无任何均匀流动方向的高雷诺数复杂湍流非定常流动的首次检验,计算结果优于基于传统的Smagorinsky涡粘性的动态亚格子模型。  相似文献   

20.
High‐Reynolds‐number channel flows regularly encounter topographies composed of multiple length scales and that protrude into the boundary layer. Physically, the presence of immersed obstacles leads to increased velocity gradients, turbulence production, and manifestation of wakes. Considerable challenges are associated with numerically describing the presence of obstacles in channel flows. Common approaches include generation of a computational mesh that is uniquely designed for the flow and obstacle, the immersed boundary method, and terrain‐following coordinates. There are challenges and limitations associated with each of these techniques. Specification of boundary conditions representing the perimeter of solid obstacles is a primary challenge of the immersed boundary method. In this document, a simplistic canopy stress‐like wall model is used to impose boundary conditions. The model isolates aerodynamically relevant local frontal areas through evaluation of the gradient of the topographic height field. The gradient of the height field describes both the surface‐normal direction and the frontal area, making it ideal for detecting areas on which the flow impinges. The model is tested in numerical simulations of turbulent half‐channel flow over topographies with different obstacles affixed–right prisms, rectangular prisms, ellipsoidal mounds, and sinusoids. In all cases, the performance is strong relative to datasets presented in the literature. Results are finally presented for numerical simulation of flow over complex synthetic fractal‐like topography and a synthetic city. These results show interesting trends in how the turbulent multiscale flow field responds to multiscale topography. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号