首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is difficult to do internal mass fractionation corrections for isotope dilution analysis by thermal ionization mass spectrometry (TIMS) or multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), especially for MC-ICP-MS. In this study, calculation methods for direct internal fractionation correction of spiked isotope analysis by TIMS or MC-ICP-MS cycle by cycle for elements having at least two internal reference isotopic ratios are presented. For TIMS, direct internal mass fractionation correction calculation methods, based on both power and exponential laws, are derived; whereas for MC-ICP-MS, due to larger mass fractionation effects, only exponential law is considered. These calculation strategies can be applied for both static and multi-dynamic measurements. For multi-dynamic measurements, the isotope fractionation effect, gain and cup efficiency effects of different collectors, as well as ion beam fluctuation effects are all simultaneously eliminated. The calculation methods were verified by Sr isotopic analyses of spiked NBS987 standard solutions by TIMS and Hf isotopic analyses of spiked geological reference materials by MC-ICP-MS. In addition, precise and accurate calibrations of isotopic ratios of the spikes, based on the calculation methods, are discussed.  相似文献   

2.
A batch of SF6 gas prepared by Messer (Germany) was metrologically certified for absolute isotope abundance ratios and molar mass (atomic weight) of sulfur following the ISO/BIPM Guide to the expression of uncertainties in measurements. The certification is based on the “Avogadro II Measurement Procedure” using the “Avogadro II amount comparator,” which was developed in the framework of the redetermination of the Avogadro constant. For the correction of small remaining systematic effects of unknown nature, synthetic isotope mixtures of Ag2S converted to SF6 were used in order to obtain “calibrated” or “absolute” values with small combined uncertainty. The values for this sulfur primary isotopic gas standard (PIGS) are traceable to the Système International d’Unités (SI) in the shortest possible way and can therefore serve as a link to SI when used in differential measurements. The PIGS is now commercially available.  相似文献   

3.
Summary The relative uncertainty on the isotope abundance ratio measurements of uranium and plutonium samples by means of thermionic mass spectrometry at the Central Bureau for Nuclear Measurements (CBNM) in Geel, Belgium, has decreased to a level of about 2 · 10–4.The improvement was mainly achieved through the preparation of synthetic isotope mixtures of uranium and plutonium, to a relative uncertainty of 0.01% (computed on a 2s basis) on the ratios of isotopes with major abundances. This allowed to determine some error sources more precisely, such as: — isotope fractionation, — non-linearity of the ion beam current measuring system.As a consequence CBNM is able to prepare certified uranium isotopic reference materials (U IRM's) for distribution, with a relative uncertainty of 0.07% (computed on a 2s basis) on the235U isotope abundance and to provide reference values on samples for the (European) Interlaboratory Measurement Evaluation Programmes (REIMEP).
Nuklearanalytische Anwendung der Thermionen-Massenspektrometrie
  相似文献   

4.
Precise 56Fe/54Fe and 57Fe/54Fe isotopic ratios on human red blood cell (RBC) samples have been measured using multiple collector-ICP-mass spectrometry (MC-ICPMS). The mass spectrometric interferences on Fe isotopes (e.g., 56ArO+ and 57ArOH+) were successfully minimized by a dry plasma condition achieved by a desolvating nebulizer sample-introduction technique. In order to eliminate possible variations in the measured isotopic ratios due to non-mass spectrometric interferences, Fe was separated from remaining organic compounds and major co-existing elements using an ion chromatographic technique. The resulting precisions of the 56Fe/54Fe and 57Fe/54Fe ratio measurements were 0.12 per thousand and 0.20 per thousand, respectively, which were high enough to detect the isotopic variation of Fe in nature. For an interlaboratory comparison, all of the Fe isotopic ratio data were normalized by the ratios for the IRMM-014 international isotopic standard. A series of 12 RBC samples were collected from one person through monthly-based sampling over a period of one year. These were analyzed to test possible seasonal changes in the 56Fe/54Fe and 57Fe/54Fe ratios. Moreover, in order to test possible variations in the 56Fe/54Fe and 57Fe/54Fe ratios among different people, RBC samples were collected from five volunteers (four males and one female). The 56Fe/54Fe and 57Fe/54Fe ratios for a series of 12 RBC samples collected over a one-year period show 3.06 per thousand and 4.51 per thousand lower than the values of IRMM-014, and no significant seasonal change could be found in the ratios. The lack in seasonal changes in the Fe isotopic ratios could be explained by a small contribution of the daily net-intake of Fe (1 - 2 mg/day) onto the total amount of Fe in the human body (2 - 4 g). The 56Fe/54Fe and 57Fe/54Fe ratios for RBC samples collected from four male samples did not vary measurably, whereas the Fe isotopic ratios for a female RBC were 0.3 per thousand/amu heavier than the mean value of four male samples. This difference in Fe isotopes among the individuals can be the result of a difference in uptake efficiency of the Fe through a dietary process from the digestive tract. The data obtained here demonstrate that the isotopic ratios of trace metals can provide new information about metabolic efficiencies of the metallic elements.  相似文献   

5.
The capability of a second-generation Nu Instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been evaluated for precise and accurate isotope-ratio determinations of lead. Essentially the mass spectrometer is a double-focusing instrument of Nier-Johnson analyzer geometry equipped with a newly designed variable-dispersion ion optical device, enabling the measured ion beams to be focused into a fixed array of Faraday collectors and an ion-counting assembly. NIST SRM Pb 981, 982, and 983 isotopic standards were used. Addition of thallium to the lead standards and subsequent simultaneous measurement of the thallium and lead isotopes enabled correction for mass discrimination, by use of the exponential correction law and 205Tl/203Tl = 2.3875. Six measurements of SRM Pb-982 furnished the results 206Pb/204Pb = 36.7326(68), 207Pb/204Pb = 17.1543(30), 208Pb/204Pb = 36.7249(69), 207Pb/206Pb = 0.46700(1), and 208Pb/206Pb = 0.99979(2); the NIST-certified values were 36.738(37), 17.159(25), 36.744(50), 0.46707(20), and 1.00016(36), respectively. Direct isotope lead analysis in silicates can be performed without any chemical separation. NIST SRM 610 glass was dissolved and introduced into the MC-ICP-MS by means of a micro concentric nebulizer. The ratios observed were in excellent agreement with previously reported data obtained by TIMS and laser ablation MC-ICP-MS, despite the high Ca/Pb concentration ratio (200/1) and the presence of many other elements at levels comparable with that of lead. Approximately 0.2 microg lead are sufficient for isotope analysis with ratio uncertainties between 240 and 530 ppm.  相似文献   

6.
Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP–MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP–MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP–MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.  相似文献   

7.
A series of measurements were carried out to establish the reliability associated with isotope ratio (235/238) measurements on uranium samples using a quadrupole inductively coupled plasma mass spectrometer (ICPMS). Figures of merit related to the isotopic measurements were determined using non certified as well as certified materials provided by the New Brunswick Laboratory (NBL). The experimental results showed that repeatability is around 0.5% while reproducibility was calculated as 0.27%. Mass discrimination was determined as 0.03% per mass unit and the system linearity check over five orders of isotope ratios yielded a mass discrimination factor (K factor) of 1.0002±0.0081 (0.81%, 2s). The mean error of measurement obtained from six different certified reference materials was 0.77%.  相似文献   

8.
Hintelmann H  Lu S 《The Analyst》2003,128(6):635-639
Variations in Hg isotope ratios in cinnabar ores obtained from different countries were detected by high precision isotope ratio measurements using multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Values of delta198/202Hg varied from 0.0-1.3 percent per thousand relative to a NIST SRM 1641d Hg solution. The typical external uncertainty of the delta values was 0.06 to 0.26 percent per thousand. Hg was introduced into the plasma as elemental Hg after reduction by sodium borohydride. A significant fractionation of lead isotopes was observed during the simultaneous generation of lead hydride, preventing normalization of the Hg isotope ratios using the measured 208/206Pb ratio. Hg ratios were instead corrected employing the simultaneously measured 205/203T1 ratio. Using a 10 ng ml(-1) Hg solution and 10 min of sampling, introducing 60 ng of Hg, the internal precision of the isotope ratio measurements was as low as 14 ppm. Absolute Hg ratios deviated from the representative IUPAC values by approximately 0.2% per u. This observation is explained by the inadequacy of the exponential law to correct for mass bias in MC-ICP-MS measurements. In the absence of a precisely characterized Hg isotope ratio standard, we were not able to determine unambiguously the absolute Hg ratios of the ore samples, highlighting the urgent need for certified standard materials.  相似文献   

9.
Becker H  Dalpe C  Walker RJ 《The Analyst》2002,127(6):775-780
Ruthenium isotopic data for a pure Aldrich ruthenium nitrate solution obtained using a Nu Plasma multi collector inductively coupled plasma-mass spectrometer (MC-ICP-MS) shows excellent agreement (better than 1 epsilon unit = 1 part in 10(4)) with data obtained by other techniques for the mass range between 96 and 101 amu. External precisions are at the 0.5-1.7 epsilon level (2sigma). Higher sensitivity for MC ICP-MS compared to negative thermal ionization mass spectrometry (N-TIMS) is offset by the uncertainties introduced by relatively large mass discrimination and instabilities in the plasma source-ion extraction region that affect the long-term reproducibility. Large mass bias correction in ICP mass spectrometry demands particular attention to be paid to the choice of normalizing isotopes. Because of its position in the mass spectrum and the large mass bias correction, obtaining precise and accurate abundance data for 104Ru by MC-ICP-MS remains difficult. Internal and external mass bias correction schemes in this mass range may show similar shortcomings if the isotope of interest does not lie within the mass range covered by the masses used for normalization. Analyses of meteorite samples show that if isobaric interferences from Mo are sufficiently large (Ru/Mo < 10(4)), uncertainties on the Mo interference correction propagate through the mass bias correction and yield inaccurate results for Ru isotopic compositions. Second-order linear corrections may be used to correct for these inaccuracies, but such results are generally less precise than N-TIMS data.  相似文献   

10.
Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ30Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ30Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g−1-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous stable isotope measurement and chemical composition analysis LASS-ICP-MS in combination with MC-ICP-MS is the method of choice.  相似文献   

11.
K-factors (= certified isotope ratio/observed isotope ratio) are determined for the isotope abundance measurements of uranium and plutonium by thermal ionisation mass spectrometry. An mdf of 0.07% and 0.18% per mass unit differing by a factor of about 3, is obtained for uranium and plutonium, respectively, employing double rhenium filament assembly in the ion source and Faraday cup as the detector using the presently available isotopic reference materials of uranium and plutonium.  相似文献   

12.
A chemical and mass-spectrometric procedure for uranium isotopic analysis using a thermal ionisation mass spectrometer equipped with a Wide Aperture Retardation Potential energy filter has been developed and applied to uranium isotopic measurements for various soil samples. Soil samples were digested using a microwave digestor. Uranium was isolated from soil samples by the chemical separation procedure based on the use of anion-exchange resin and UTEVA extraction chromatography column. The isotope ratios were measured for two certified reference materials by using a VG Sector 54-30 thermal ionisation mass spectrometer in dynamic mode with Faraday cup and Daly ion counting system. Replicates of standard reference materials showed excellent analytical agreement with established values supporting the reliability and accuracy of the method. Precision of the 235U/238U ratio was achieved by a correction factor of 0.22% amu as a function of ion-beam intensity with sample loads of around 250?ng of U. The resulting reproducibility for standards and soil samples was better than 0.2% at two standard deviations (SD). Uranium isotopic compositions have been determined in several reference soil samples such as Buffalo river sediment, NIST 2704, river sediment SRM 4350b and ocean sediment NIST-4357 and a Chernobyl soil sample. There was a significant deviation from the natural uranium in comparison with Chernobyl soil samples.  相似文献   

13.
Geological RMs (G-1 and W-1) were introduced in 1951 for the purpose of validating the accuracy of silicate rock analysis by dc arc spectrography. Since then the introduction of an array of other spectrographic methods has greatly enhanced research into geological processes. The range of elements that could be determined was expanded, and the detection limits for measurement was lowered repeatedly through the years. The development and use of reference materials was critically important in supporting this rapid expansion of geological research. Essentially, all RMs are of importance to the geosciences community since G-1 and W-1 have been prepared and distributed by national geological institutions, first by the USGS or the CRPG, rather than by national metrology institutions. These geological institutions are not yet certifying their RMs according to ISO Guides. The International Association of Geoanalysts (IAG) is seeking to meet this higher metrological requirement. Since the inception of the IAG certification program in 2003, five powdered silicate rock materials have been issued to meet the demand with respect to calibration, method validation, traceability, etc. for whole rock major and trace element analysis. The introduction of microanalytical techniques nearly decades ago and the more recent advent of MC-ICP-MS have become new driving forces in geochemical research. The first opened the possibility of performing in situ elemental composition studies at the ??m scale. The second led to the discovery of small isotope composition variations of mass- and non-mass-dependent processes in ??non-traditional?? stable isotopes (e.g., Fe, Cu, Zn, Mo, W, and Hg) through cosmo- and geochemical processes. Coupling the two techniques expands in situ analysis to isotopic studies. These developments have created great demand for (certified) RMs for both isotope ratio and microanalytical measurements for the geochemical community that is not yet being met. Homogeneity at a ??m scale and unmatched matrices of the natural minerals or synthetic doped glasses hamper the progress in certification of RMs for the microanalytical measurement community. A challenge for the production of isotope RMs is to prepare an RM solution with an isotopic composition similar to the natural systems under investigation. Refined cadmium and nickel metals, for example, have fractionated isotopic compositions far above the range observed in natural systems of interest. Yet, the calibration RM cannot fulfill its purpose when the uncertainty of its isotopic composition exceeds that of the unknowns being measured against it. In this regard, the IAG has recently certified a calibration solution for the determination of Os isotopic ratios. It is also working through member organizations, USGS, and MPI for Geochemistry (Mainz) to develop appropriate microanalytical standards. In addition to these current and future challenges, establishing metrological traceability of geological reference materials in the absence of starting points developed by national metrology institutions is a major issue that needs attention in all future certifications.  相似文献   

14.
Despite the large number of successful applications of laser ablation, elemental and isotopic fractionation coupled to inductively coupled plasma mass spectrometry (ICP-MS) remain as the main limitations for many applications of this technique in the fields of analytical chemistry and Earth Sciences. A substantial effort has been made to control such fractionations, which are well-established features of nanosecond laser ablation systems. Technological advancements made over the past decade now allow the ablation of solids by femtosecond laser pulses in the deep ultraviolet (UV) region at wavelengths less than 200 nm. Here the use of femtosecond laser ablation and its effects on elemental and isotopic fractionation is investigated. The Pb/U system is used to illustrate elemental fractionation and stable Fe isotopes are used to illustrate isotopic fractionation. No elemental fractionation is observed beyond the precision of the multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements. Without a matrix match between standard and sample, elemental fractionation is absent even when using different laser ablation protocols for standardization and samples (spot versus raster). Furthermore, we found that laser ablation-induced isotope ratio drifts, commonly observed during nanosecond laser ablation, are undetectable during ultraviolet femtosecond laser ablation. So far the precision obtained for Fe isotope ratio determinations is 0.1‰ (2 standard deviation) for the 56Fe/54Fe ratio. This is close to that obtainable by solution multiple-collector inductively coupled plasma mass spectrometry. The accuracy of the results appears to be independent of the matrix used for standardization. The resulting smaller particle sizes reduce fractionation processes. Femtosecond laser ablation carries the potential to solve some of the difficulties encountered during the two prior decades since the introduction of laser ablation.  相似文献   

15.
16.
High-precision (∼0.015%/mass) isotope ratio measurements of Fe may be obtained by using magnetic-sector thermal ionization mass spectrometry (TIMS), where rigorous correction of instrumentally produced mass fractionation can be made. Such corrections are best done by using a double-spike approach, which was first introduced several decades ago. However, previous derivations do not lend themselves to the high-precision isotope analysis that modern TIMS instruments are capable of because of various assumptions of mass fractionation laws or constant atomic weights. Moreover, some of these previous approaches took iterative approaches to the calculation, and none presented detailed error propagations. Here we present a completely general derivation to the double-spike approach that may be used for any appropriate isotope system and is applicable to the mass fractionation laws that are known to occur in TIMS. In addition, we present an assessment of error propagation as a function of algorithm and spike isotope composition. This approach has produced the highest precision Fe isotope ratio measurements yet reported, on the order of ±0.2 to 0.3 per mil for the 54Fe/56Fe ratio, that correct for instrumentally produced mass fractionation and yet retain natural, mass-dependent isotopic variations in samples.  相似文献   

17.

Parent–progeny isotope relationships provide critical signatures in forensic efforts designed to determine the history of interdicted nuclear materials. Unfortunately, there is substantial need for new standards and QC strategies yielding confidence in such chronometric measurements. Here, we investigate the initial isolation of progeny uranium in certified reference material-126a for use as a precision comparator in a thermal ionization mass spectrometry-based QC strategy seeking to provide improved uncertainties in isotopic and chronometric measurements for nuclear materials containing elevated U-236, such as plutonium. Application to real-world Pu either preserved or improved upon uncertainties associated with key parent–daughter ratios and further constrained associated chronometric windows.

  相似文献   

18.
This article reviews recent developments in the use of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) to provide high-precision carbon isotope ratio measurements. MC-ICP-MS could become an alternative method to isotope ratio mass spectrometry (IRMS) for rapid carbon isotope ratio determinations in organic compounds and characterisation and certification of isotopic reference materials. In this overview, the advantages, drawbacks and potential of the method for future applications are critically discussed. Furthermore, suggestions for future improvements in terms of precision and sensitivity are made. No doubt, this is an exciting analytical challenge and, as such, hurdles will need to be cleared.  相似文献   

19.
In this work, a novel approach to measure isotope ratios via multi-collector—inductively coupled plasma—mass spectrometry (MC-ICP-MS) for low amounts of target element is proposed. The methodology is based on mixing of the sample (target element isolate) with a non-enriched in-house standard, previously characterized for its isotopic composition. This methodology has been applied to isotopic analysis of Cu and of Fe in whole blood samples. For this purpose, different mixtures of sample + in-house standard were prepared and adjusted to a final concentration of 500 μg/L of the target elements for isotopic analysis. δ65Cu, δ56Fe, and δ57Fe varied linearly as a function of the amount of in-house standard (or of sample) present in the mixture. The isotopic composition of the sample was calculated considering the isotope ratios measured for (i) the mixture and (ii) the in-house standard and (iii) the relative concentrations of target element contributed by the sample and the standard to the mixture, respectively. For validation purposes, the isotopic analysis of whole blood Cu was carried out using both the conventional (using 2 mL of whole blood) and the newly developed approach (using 500 μL of whole blood). The δ65Cu values obtained using mixtures containing 40 % (200 μg/L) of Cu from the blood samples and 60 % (300 μg/L) of Cu from the in-house standard were in good agreement with the δ65Cu value obtained using the conventional approach (bias ≤0.15?‰).  相似文献   

20.
Gao B  Liu Y  Sun K  Liang X  Peng P  Sheng G  Fu J 《Analytica chimica acta》2008,612(1):114-120
A method for the accurate determination of Cd and Pb isotope compositions in sediment samples is presented. Separation of Cd and Pb was designed by using an anionic exchange chromatographic procedure. Measurements of Cd isotopic compositions were carried out by multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS), by using standard-sample bracketing technology for mass bias correction and Pb isotopic ratios were determined by thermal ionization mass spectrometry (TIMS). The factors that affect the accurate and precise Cd isotope compositions analysis, such as instrumental mass fractionation and isobaric interferences, were carefully evaluated and corrected. The Cd isotopic results were reported relative to an internal Cd solution and expressed as the δ114/110Cd. Five Cd reference solutions and one Pb standard were repeatedly measured in order to assess the accuracy of the measurements. Uncertainties obtained were estimated to be lesser than 0.11‰ (2s) for the δ114/110Cd value. Analytical uncertainties in 2s for Pb isotopic ratios were better than 0.5‰. The method has been successfully applied to the investigation of Cd and Pb isotope compositions in sediment samples collected from North River in south China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号