首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent experimental investigations show that the open metal sites may have a favorable impact on the hydrogen adsorption capacity of metal-organic frameworks (MOFs); however, no definite evidence has been obtained to date and little is known on the interactions between hydrogen and the pore walls of this kind of MOFs. In this work, a combined grand canonical Monte Carlo simulation and density functional theory calculation is performed on the adsorption of hydrogen in MOF-505, a recently synthesized MOF with open metal sites, to provide insight into molecular-level details of the underlying mechanisms. This work shows that metal-oxygen clusters are preferential adsorption sites for hydrogen, and the strongest adsorption of hydrogen is found in the directions of coordinatively unsaturated open metal sites, providing evidence that the open metal sites have a favorable impact on the hydrogen sorption capacity of MOFs. The storage capacity of hydrogen of MOF-505 at room temperature and moderate pressures is predicted to be low, in agreement with the outcome for hydrogen physisorption in other porous materials.  相似文献   

3.
高珂  郑斌 《化学通报》2023,86(2):233-239
丙烯、丙烷作为分子尺寸相近的共沸物,其分离一直是化工领域研究热点。金属有机骨架(MOFs)材料因其高度可调的孔道结构,在丙烯/丙烷分离应用上已展现出诱人潜能。本文基于Core MOF 2019数据库,采用巨正则蒙特卡洛基高通量计算筛选技术,获得了分离性优异的MOFs结构,发现其拥有适中的丙烯吸附量和较弱的丙烷吸附能力,且骨架孔径为3.70~4.10?、孔隙率中等(0.35~0.44),并揭示了孔道中心吸附位的选择性与丙烯/丙烷分离系数间关系。本研究阐明了高丙烯/丙烷分离性的骨架材料的结构和性能特征,为设计MOFs实现丙烯/丙烷的高效分离提供理论指导和数据支撑。  相似文献   

4.
Metal-organic frameworks (MOFs) with open metal sites exhibit a much stronger H2 binding strength than classical MOFs, due to the direct interaction between H2 and the coordinately unsaturated metal ions. Here we report a systematic study of the H2 adsorption on a series of isostructural MOFs, M2(dhtp) (M = Mg, Mn, Co, Ni, Zn). The experimental, initial isosteric heats of adsorption for H2 (Qst) of these MOFs range from 8.5 to 12.9 kJ/mol, with increasing Qst in the following order: Zn, Mn, Mg, Co, and Ni. The H2 binding energies derived from first-principles calculation follow the same trend as the experimental observation on Qst, confirming the electrostatic Coulomb attraction between the H2 and the open metals being the major interaction. We also found a strong correlation between the metal ion radius, the M-H2 distance, and the H2 binding strength, which provides a viable, empirical method to predict the relative H2 binding strength of different open metals.  相似文献   

5.
6.
Owing to their high uptake capacity at low temperature and excellent reversibility kinetics, metal-organic frameworks have attracted considerable attention as potential solid-state hydrogen storage materials. In the last few years, researchers have also identified several strategies for increasing the affinity of these materials towards hydrogen, among which the binding of H(2) to unsaturated metal centers is one of the most promising. Herein, we review the synthetic approaches employed thus far for producing frameworks with exposed metal sites, and summarize the hydrogen uptake capacities and binding energies in these materials. In addition, results from experiments that were used to probe independently the metal-hydrogen interaction in selected materials will be discussed.  相似文献   

7.
Atomistic grand canonical Monte Carlo simulations were performed in this work to investigate the role of open copper sites of Cu-BTC in affecting the separation of carbon monoxide from binary mixtures containing methane, nitrogen, or hydrogen. Mixtures containing 5%, 50%, or 95% CO were examined. The simulations show that electrostatic interactions between the CO dipole and the partial charges on the metal-organic framework (MOF) atoms dominate the adsorption mechanism. The binary simulations show that Cu-BTC is quite selective for CO over hydrogen and nitrogen for all three mixture compositions at 298 K. The removal of CO from a 5% mixture with methane is slightly enhanced by the electrostatic interactions of CO with the copper sites. However, the pore space of Cu-BTC is large enough to accommodate both molecules at their pure-component loadings, and in general, Cu-BTC exhibits no significant selectivity for CO over methane for the equimolar and 95% mixtures. On the basis of the pure-component and low-concentration behavior of CO, the results indicate that MOFs with open metal sites have the potential for enhancing adsorption separations of molecules of differing polarities, but the pore size relative to the sorbate size will also play a significant role.  相似文献   

8.
The gas adsorption and CO2 separation properties of 9 different metal-organic frameworks (MOFs) have been modelled with grand canonical Monte Carlo (GCMC) adsorption simulations. Adsorption of both pure gases and gas mixtures has been studied. MOFs are shown to have high selectivity for polar gases such as CO2 over non-polar gases such as N2. Selectivity of one polar gas from another can be altered by changing the polarity of the framework, pore geometry and also temperature. Often features that lead to good selectivity of CO2 from N2 also lead to poor selectivity of CO2 from H2O.  相似文献   

9.
Metal-organic frameworks (MOFs) with open metal sites have great potential for enhancing adsorption separation of the molecules with different polarities. However, the elution and separation of polar compounds on such MOFs packed columns using nonpolar solvents is difficult due to too strong interaction between polar compounds and the open metal sites. Here, we report the control of the coordination status of the open metal sites in MOFs by adjusting the content of methanol (MeOH) in the mobile phase for fast and high-resolution separation of polar compounds. To this end, high-performance liquid chromatographic separation of nitroaniline, aminophenol and naphthol isomers, sulfadimidine, and sulfanilamide on the column packed with MIL-101(Cr) possessing open metal sites was performed. The interaction between the open metal sites of MIL-101(Cr) and the polar analytes was adjusted by adding an appropriate amount of MeOH to the mobile phase to achieve the effective separation of the polar analytes due to the competition of MeOH with the analytes for the open metal sites. Fourier transform infrared spectra and X-ray photoelectron spectra confirmed the interaction between MeOH and the open metal sites of MIL-101(Cr). Thermodynamic parameters were measured to evaluate the effect of the content of MeOH in the mobile phase on the separation of polar analytes on MIL-101(Cr) packed column. This approach provides reproducible and high performance separation of polar compounds on the open metal sites-containing MOFs.  相似文献   

10.
《中国化学快报》2023,34(4):107527
Metal nanoparticles (MNPs) possess size-dependent desirable electronic and optical properties while metal-organic frameworks (MOFs) have an edge over extremely large specific surface areas, homogeneous structure, high porosity and remarkable chemical stability. Their combination (MNPs/MOFs) is a novel nanomaterial with broad application prospect in sensing field. To improve performance in sensing applications, we have paid great attention to synergistic effects between the two compositions above. Because of the synergistic effects between MNPs and MOFs, sensors on the basis of MNPs/MOFs composites show significant sensing enhancement with respect to stability, selectivity and sensitivity. In this review, various applications for MNPs/MOFs composites in electrochemical sensing, fluorescent sensing, colorimetric sensing, surface-enhanced Raman scattering sensing and chemiluminescence/electrochemiluminescence sensing are focused and summarized. Besides, the synergistic interactions between MNPs and MOFs was investigated. Finally, based on theoretical information from the reports as well as experimental experience, this review offers the challenges and opportunities for future research on MNPs/MOFs composites.  相似文献   

11.
Molecular hydrogen is known to form stable, "nonclassical" sigma complexes with transition metal centers that are stabilized by donor-acceptor interactions and electrostatics. In this computational study, we establish that strong H2 sorption sites can be obtained in metal-organic frameworks by incorporating open transition metal sites on the organic linkers. Using density functional theory and energy decomposition analysis, we investigate the nature and characteristics of the H2 interaction with models of exposed open metal binding sites {half-sandwich piano-stool shaped complexes of the form (Arene)ML(3- n)(H2)n [M=Cr, Mo, V(-), Mn(+); Arene = C6H5X (X=H, F, Cl, OCH3, NH2, CH3, CF3) or C6H3Y2X (Y=COOH, X=CF3, Cl; L=CO; n=1-3]}. The metal-H2 bond dissociation energy of the studied complexes is calculated to be between 48 and 84 kJ/mol, based on the introduction of arene substituents, changes to the metal core, and of charge-balancing ligands. Thus, design of the binding site controls the H2 binding affinity and could be potentially used to control the magnitude of the H2 interaction energy to achieve reversible sorption characteristics at ambient conditions. Energy decomposition analysis illuminates both the possibilities and present challenges associated with rational materials design.  相似文献   

12.
The adsorption of ammonia in four metal-organic frameworks modified with different functional groups (-OH, -C=O, -Cl, -COOH) was investigated using a hierarchical molecular modeling approach. To describe the hydrogen bonding and other strong interactions between NH(3) and the surface functional groups, a set of Morse potential parameters were obtained by fitting to energies from quantum chemical calculations at the MP2 level of theory. We describe a systematic force field parameterization process, in which the Morse parameters were fitted using simulated annealing to match a large number of single-point MP2 energies at various distances and angles. The fitted potentials were then used in grand canonical Monte Carlo simulations to predict ammonia adsorption isotherms and heats of adsorption in functionalized MIL-47, IRMOF-1, IRMOF-10, and IRMOF-16. The results show that ammonia adsorption can be significantly enhanced by using materials with appropriate pore size, strongly interacting functional groups, and high density of functional groups.  相似文献   

13.
This work performs a systematic computational study toward a molecular understanding of the separation characteristics of metal-organic frameworks (MOFs), for which the purification of synthetic gas by two representative MOFs, MOF-5 and Cu-BTC, is adopted as an example. The simulations show that both geometry and pore size affect largely the separation efficiency, complex selectivity behaviors with different steps can occur in MOFs, and the electrostatic interactions that exist can enhance greatly the separation efficiency of gas mixtures composed of components with different chemistries. Furthermore, the macroscopic separation behaviors of the MOF materials are elucidated at a molecular level to give insight into the underlying mechanisms. The findings as well as the molecular-level elucidations provide useful microscopic information toward a complete understanding of the separation characteristics of MOFs that may lead to general design strategies for synthesizing new MOFs with tailored properties, as well as guiding their practical applications.  相似文献   

14.
15.
The twelve-connected metal-organic frameworks {[Ni(3)(OH)(L)(3)].n(solv)}(infinity) and {[Fe(3)(O)(L)(3)].n(solv)}(infinity) [LH(2) = pyridine-3,5-bis(phenyl-4-carboxylic acid)] have been prepared and characterised: these materials can be desolvated to form porous materials that show adsorption of H(2) up to 4.15 wt% at 77 K.  相似文献   

16.
A three-dimensional triply interpenetrated mixed metal-organic framework, Zn(2)(BBA)(2)(CuPyen)·G(x) (M'MOF-20; BBA = biphenyl-4,4'-dicarboxylate; G = guest solvent molecules), of primitive cubic net was obtained through the solvothermal reaction of Zn(NO(3))(2), biphenyl-4,4'-dicarboxylic acid, and the salen precursor Cu(PyenH(2))(NO(3))(2) by a metallo-ligand approach. The triple framework interpenetration has stabilized the framework in which the activated M'MOF-20a displays type-I N(2) gas sorption behavior with a Langmuir surface area of 62 m(2) g(-1). The narrow pores of about 3.9 ? and the open metal sites on the pore surfaces within M'MOF-20a collaboratively induce its highly selective C(2)H(2)/CH(4) and CO(2)/CH(4) gas separation at ambient temperature.  相似文献   

17.
Reducing anthropogenic CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues of our age. Carbon capture and storage (CCS) is one option for reducing these harmful CO2 emissions. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are of paramount importance. Metal-organic frameworks (MOFs), a new class of crystalline porous materials constructed by metal-containing nodes bonded to organic bridging ligands hold great potential as adsorbents or membrane materials in gas separation. In this paper, we review the research progress (from experimental results to molecular simulations) in MOFs for CO2 adsorption, storage, and separations (adsorptive separation and membrane-based separation) that are directly related to CO2 capture.  相似文献   

18.
Our first-principles calculation shows that molecular hydrogen (H(2)) adsorption at an exposed Fe(II) site in metal-organic frameworks could induce a spin flip in the Fe(II) center resulting in a spin-state transition from a triplet high-spin (HS) to a singlet low-spin (LS) state. The Kubas-type Fe-H(2) interaction, where H(2) coordinates onto the Fe(II) center as a σ-ligand, is found commensurate in strength with the exchange interaction of Fe 3d electrons, which is responsible for the occurrence of the spin-state transition in this system. The H(2) binding energies are 0.08 and 0.35 eV per H(2) at the HS and LS states, respectively. This effect is expected to find applications in spin-control in molecular magnets, hydrogen sensing and storage.  相似文献   

19.
20.
A pair of interpenetrated and non-interpenetrated chiral metal-organic frameworks with the same catalytic sites but different open channel sizes catalysed asymmetric cyclopropanation of substituted terminal alkenes with excellent diastereoselectivities (up to 9.6) and enantioselectivities (up to >99%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号