共查询到20条相似文献,搜索用时 0 毫秒
1.
Ab initio electronic structure calculations have been performed for (CH(3)CN)(2) (-) and (CH(3)CN)(3) (-) cluster anions using a diffuse basis set. We found both the dipole-bound structures and internal structures, where in the former structure an excess electron is mainly distributed on the surface of the cluster while an excess electron is internally trapped in the latter configuration. The optimized structures found for cluster anions were compared to those for neutral clusters. Potential-energy surfaces were also plotted as a function of appropriate internal coordinates in order to understand the interconversions of the optimized structures of clusters. The relative stabilities of the optimized confirmers have been discussed on the basis of the characteristics of these potential surfaces, relative energies, and electron vertical detachment energies. 相似文献
2.
The effects of homogeneous and heterogeneous solvation on the electronic structure and photodetachment dynamics of hydrated carbon dioxide cluster anions are investigated using negative-ion photoelectron imaging spectroscopy. The experiments are conducted on mass-selected [(CO(2))(n)()(H(2)O)(m)()](-) cluster anions with n and m ranging up to 12 and 6, respectively, for selected clusters. Homogeneous solvation in (CO(2))(n)()(-) has minimal effect on the photoelectron angular distributions, despite dimer-to-monomer anion core switching. Heterogeneous hydration, on the other hand, is found to have the marked effect of decreasing the photodetachment anisotropy. For example, in the [CO(2)(H(2)O)(m)()](-) cluster anion series, the photoelectron anisotropy parameter falls to essentially zero with as few as 5-6 water molecules. The analysis of the data, supported by theoretical modeling, reveals that in the ground electronic state of the hydrated clusters the excess electron is localized on CO(2), corresponding to a (CO(2))(n)()(-).(H(2)O)(m)() configuration for all cluster anions studied. The diminishing anisotropy in the photoelectron images of hydrated cluster anions is proposed to be attributable to photoinduced charge transfer to solvent, creating transient (CO(2))(n)().(H(2)O)(m)()(-) states that subsequently decay via autodetachment. 相似文献
3.
Reaction products resulting from small molybdenum suboxide cluster anions and carbon monoxide were studied with both mass spectrometry and anion photoelectron (PE) spectroscopy. In addition to the C6O6- product proposed previously, a number of unsaturated carbonyls were identified as terminal products in these reactions. A new PE spectrum of what may be C6O6-, in which the contribution from the Fe(CO)4- contaminant is subtracted, is reported. Additionally, the PE spectra of Mo(CO)5-, MoO(CO)3-, and MoO2(CO)n- (n=1 and 2) are presented, along with a new PE spectrum of an additional contaminant, Ni(CO)3-. Evidence of photodissociation of MoO(CO)3- to MoO-+3 CO is observed in the PE spectrum of MoO(CO)3-. 相似文献
4.
Photoelectrons from mass-identified jet-cooled tin and lead cluster anions (Sn n ? , Pb n ? ) are detached by ultraviolet laser light ( hν=3.68 eV). The photoelectron energy spectra give the detachment energies of ground state cluster anions (electron affinities) as well as excitation energies of neutral clusters in the geometry of the anions. The energy spectra for Sn n ? are dominated by flat thresholds with an n-dependence similar to that of other group IV clusters. In contrast, for Pb n ? we find pronounced narrow lines close to threshold, generally followed by a 0.3–1.4 eV gap which indicates closed-shell behaviour of Pb n ? for nearly all n. 相似文献
5.
Three novel vanadogermanate cluster anions have been synthesized by hydrothermal reactions. The cluster anions are derived from the (V(18)O(42)) Keggin cluster shell by substitution of V=O(2+) "caps" by Ge(2)O(OH)(2)(4+) species. In Cs(8)[Ge(4)V(16)O(42)(OH)(4)].4.7H(2)O, 1, (monoclinic, space group C2/c (No. 15), Z = 8, a = 44.513(2) A, b = 12.7632(7) A, c = 22.923(1) A, beta = 101.376(1) degrees ) and (pipH(2))(4)(pipH)(4)[Ge(8)V(14)O(50).(H(2)O)] (pip = C(4)N(2)H(10)), 2 (tetragonal, space group P4(2)/nnm (No. 134), Z = 2, a = 14.9950(7) A, c = 18.408(1) A), two and four VO(2+) caps are replaced, respectively, and each cluster anion encapsulates a water molecule. In K(5)H(8)Ge(8)V(12)SO(52).10H(2)O, 3, (tetragonal, space group I4/m (No. 87), Z = 2, a = 15.573(1) A, c = 10.963(1) A), four VO(2+) caps are replaced by Ge(2)O(OH)(2)(4+) species, and an additional two are omitted. The cluster ion in 3 contains a sulfate anion disordered over two positions. The cluster anions are analogous to the vanadoarsenate anions [V(18)(-)(n)()As(2)(n)()O(42)(X)](m)(-) (X = SO(3), SO(4), Cl; n = 3, 4) previously reported. 相似文献
6.
Structures and physical properties of small palladium clusters Pd n up to n = 15 and several selected larger clusters were studied using density functional theory under the generalized gradient approximation. It was found that small Pd n clusters begin to grow 3‐dimensionally at n = 4 and evolve into symmetric geometric configurations, such as icosahedral and fcc‐like, near n = 15. Several isomers with nearly degenerate average binding energies were found to coexist and the physical properties of these clusters were calculated. For several selected isomers, relatively moderate energy barriers for structural interchange for a given cluster size were found, implying that isomerization could readily occur under ambient conditions. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 相似文献
7.
The electrochemical potential is the fundamental parameter in the theory of electrochemistry. Not only does it determine the position of electrochemical equilibria but also it acts as the driving force for electron transfer reactions, diffusion-migration phenomena, and phase transformations of all kinds. In the present work, the electrochemical potential is defined as the total work done in transferring a single particle of a substance from a universal reference state to a specified location, at constant temperature and pressure. It is the sum of two scalar fields: the electrostatic potential energy and the chemical potential energy. The electrochemical potential is widely underutilized within the fields of solid-state science and electrochemical engineering. For historical reasons, many authors prefer to analyze driving forces in terms of electrode potentials, concentration gradients, or Gibbs free energies. In this paper, the author provides a short introduction to the electrochemical potential and then shows how some of the major branches of electrochemistry can benefit from using it. Topics examined include the Volta potential difference, the membrane potential difference, the scanning Kelvin probe microscope, the electromotive force, the proton motive force, and the activation of electron transfer. 相似文献
8.
Tafel slopes for multistep electrochemical reactions are derived from first principles. The derivation takes place in two stages. First, Dirac’s perturbation theory is used to solve the Schrödinger equation. Second, current–voltage curves are obtained by integrating the single-state results over the full density of states in electrolyte solutions. Thermal equilibrium is assumed throughout. Somewhat surprisingly, it is found that the symmetry factor that appears in the Butler–Volmer equation is different from the symmetry factor that appears in electron transfer theory, and a conversion formula is given. Finally, the Tafel slopes are compiled in a convenient look-up table. 相似文献
9.
The natural amino acids have different preferences of occurring in specific types of secondary protein structure. Simulations are performed on periodic model beta-sheets of 14 different amino acids, at the level of density functional theory, employing the generalized gradient approximation. We find that the statistically observed beta-sheet propensities correlate very well with the calculated binding energies. Analysis of the calculations shows that the beta-sheet propensities are determined by the local flexibility of the individual polypeptide strands. 相似文献
10.
Attachment of free electrons to water clusters embedded in helium droplets leads to water-cluster anions (H2O)n(-) and (D2O)n(-) of size n > or = 2. Small water-cluster anions bind to up to 10 helium atoms, providing compelling evidence for the low temperature of these complexes, but the most abundant species are bare cluster anions. In contrast to previous experiments on bare water clusters, which showed very pronounced magic and anti-magic anion sizes below n = 12, the presently observed size distributions vary much more smoothly, and all sizes are easily observed. Noticeable differences are also observed in the stoichiometry of fragment anions formed upon dissociative electron attachment and the energy dependence of their yield. Spectroscopic characterization of these ultracold water-cluster anions promises to unravel the relevance of metastable configurations in experiments and the nature of the still controversial bonding sites for the excess electron in small water-cluster anions. 相似文献
12.
(Nickel)(n)(benzene)(m) (-) cluster anions were studied by both mass spectrometry and anion photoelectron spectroscopy. Only Ni(n)(Bz)(m) (-) species for which n > or =m were observed in the mass spectra. No single-nickel Ni(1)(Bz)(m) (-) species were seen. Adiabatic electron affinities, vertical detachment energies, and second transition energies were determined for (n,m)=(2,1), (2,2), (3,1), and (3,2). For the most part, calculations on Ni(n)(Bz)(m) (-) species by B. K. Rao and P. Jena [J. Chem. Phys. 117, 5234 (2002)] were found to be consistent with our results. The synergy between their calculations and our experiment provided enhanced confidence in the theoretically implied magnetic moments of several nickel-benzene complexes. The magnetic moments of small nickel clusters were seen to be extremely sensitive to immediate molecular environmental effects. 相似文献
13.
Photodissociation and photodetachment of negatively charged sulfur dioxide clusters (SO 2) n ? , n=2–11, were investigated in the wavelength range from 458 to 660 nm. Electrons obtained from the interaction of photons with clusters were found to be produced in two photon processes for n≥3. Hence their detachment threshold energy is increased by at least 0.7 eV with respect to the dimer. Wavelength dependent depletion spectra indicate that the clusters are composed of a dimer anion chromophore solvated by neutral molecules. The spectral position of the absorption band is maintained and the shape evolves continuously with cluster size. However, a narrowing of the band with increasing cluster size is observed. 相似文献
14.
Photodissociation of negatively charged sulfur dioxide clusters (SO 2) n ? , 2≦ n≦11, was investigated in the wavelength range between 458 nm and 600 nm using a tandem mass spectrometer. The spectral position of the absorption band remains unchanged, however it exhibits narrowing with increasing cluster size. The smooth evolution of the spectra shows that the clusters are composed of a dimer anion core surrounded by neutral molecules. The analysis of the fragmentation products reveals that the absorption of a photon is followed by statistical evaporation of neutrals with a mean energy loss of 0.28±0.05 eV per evaporated monomer in the large cluster limit. 相似文献
15.
Zeolite materials are microporous aluminosilicates with various uses, including acting as important catalysts in many processes. One such process is the methanol to gasoline reaction, used widely in industry. This reaction is known to be associated with Brønsted acid sites in the zeolite, formed when Si is substituted by Al in the framework, with an associated H + being bound nearby to maintain charge neutrality. However, it is not clear exactly what role the proton plays in this reaction. Because of the large unit cell (generally 50-300 atoms, depending on the particular zeolite) of such structures, most ab initio calculations of these materials have focused on studying small clusters representing just a portion of the framework. However, by choosing the chabazite zeolite structure, which has only 36 atoms in the primitive unit cell, we have been able to perform a full periodic ab initio calculation. This has used density functional theory with a generalized gradient approximation for the exchange-correlation energy, a plane-wave basis set, and norm-conserving optimized pseudopotentials. Using these methods we have examined the geometry and electronic structure of a zeolite acid site and considered one way in which a methanol molecule may bind to such a site. © 1997 John Wiley & Sons, Inc. 相似文献
16.
Efficient Monte Carlo algorithms and a mixed-basis set electronic structure program were used to compute from first principles the vapor-liquid coexistence curve of water. A water representation based on the Becke-Lee-Yang-Parr exchange and correlation functionals yields a saturated liquid density of 900 kg/m3 at 323 K and normal boiling and critical temperatures of 350 and 550 K, respectively. An analysis of the structural and electronic properties of the saturated liquid phase shows an increase of the asymmetry of the local hydrogen-bonded structure despite the persistence of a 4-fold coordination and decreases of the molecular dipole moment and of the spread of the lowest unoccupied molecular orbital with increasing temperature. 相似文献
18.
The electronic relaxation dynamics of water cluster anions, (H(2)O)(n)(-), have been studied with time-resolved photoelectron imaging. In this investigation, the excess electron was excited through the p<--s transition with an ultrafast laser pulse, with subsequent electronic evolution monitored by photodetachment. All excited-state lifetimes exhibit a significant isotope effect (tau(D)2(O)/tau(H)2(O) approximately 2). Additionally, marked dynamical differences are found for two classes of water cluster anions, isomers I and II, previously assigned as clusters with internally solvated and surface-bound electrons, respectively. Isomer I clusters with n > or = 25 decay exclusively by internal conversion, with relaxation times that extrapolate linearly with 1/n toward an internal conversion lifetime of 50 fs in bulk water. Smaller isomer I clusters (13 < or = n < or = 25) decay through a combination of excited-state autodetachment and internal conversion. The relaxation of isomer II clusters shows no significant size dependence over the range of n = 60-100, with autodetachment an important decay channel following excitation of these clusters. Photoelectron angular distributions (PADs) were measured for isomer I and isomer II clusters. The large differences in dynamical trends, relaxation mechanisms, and PADs between large isomer I and isomer II clusters are consistent with their assignment to very different electron binding motifs. 相似文献
19.
Experimental and theoretical evidence is presented for the nondissociative chemisorption of O2 on free Au cluster anions (Aun-, n=number of atoms) with n=2, 4, 6 at room temperature, indicating that the stabilization of the activated di-oxygen species is the key for the unusual catalytic activities of Au-based catalysts. In contrast to Aun- with n=2, 4, 6, O2 adsorbs atomically on Au monomer anions. For the Au monomer neutral, calculations based on density functional theory reveal that oxygen should be molecularly bound. On Au dimer and tetramer neutrals, oxygen is molecularly bound with the O-O bond being less activated with respect to their anionic counterparts, suggesting that the excess electron in the anionic state plays a crucial role for the O-O activation. We demonstrate that interplay between experiments on gas phase clusters and theoretical approach can be a promising strategy to unveil mechanisms of elementary steps in nanocatalysis. 相似文献
20.
Aluminium cluster anions (Al n ? ) are produced by laser vaporization without additional ionization and cooled by supersonic expansion. Photoelectrons from mass-identified anion bunches ( n=2...25) are detached by laser light ( hv=3.68 eV) and undergo energy analysis in a magnetic bottle-type time-of-flight spectrometer. The measurements provide information about the electronic excitation energies from ionic ground states to neutral states of the clusters. In contrast to bulk aluminium these cluster photoelectron spectra partially have well-resolved bands which originate from low-lying excited bands. For small clusters, especially the aluminium dimer and trimer, quantum-chemical calculations will be compared to the measurements. The electron affinity size dependence of larger clusters shows conclusive evidence for “shell” effects. 相似文献
|