首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文研究了水溶性金属卟啉存在下丁硫醇的氧化过程, 考察了金属卟啉的中心金属离子、周围基团及轴向配体与其催化活性之间的关系。发现只有钴卟啉对硫醇的氧化反应有明显的催化作用。卟啉环的周围基团对钴卟啉的催化性能有显著影响, 其活性顺序为: CoTPyP>Co(p-SO3Na)TPP>Co(p-OH)TPP>Co(p-NH2)TPP>CoTPP。研究了各种动力学因素(底物浓度、催化剂浓度、碱浓度和吡啶添加物浓度)与硫醇转化速度之间的关系并借助设想的催化循环解释了反应的动力学规律。  相似文献   

2.
以无取代的meso-四-(4-N)-吡啶基卟啉及其过渡族金属(主要Cu~(2+)、Zn~(2+))络合物制备L-B膜,以近紫外-可见吸收光谱和荧光光谱为手段,研究叶啉类分子在氯仿溶液中,L-B膜状态下以及固态状态下的相互作用。探讨分子聚集体的存在对光谱性质的影响。 为了研究叶咻类分子间的相互作用及其对光谱性质的影响,我们首先分析了叶啉在CHCl_3溶液中及固态状态下的近紫外-可见吸收光谱和荧光光谱。并将其与叶啉类分子的L-B膜作比较。结果表明,卟啉类的Soret吸收带带宽及峰位置在三种状态下均不相同,L-B膜的情况介于溶液中的和固体下的情况之间,说明了在L-B膜中,卟啉分子存在着某种形式的聚集体,且在这种聚集体中分子间的相互作用程度比固体弱,可以认为L-B膜上的分子呈准晶体状态。  相似文献   

3.
The photophysical properties, such as the UV-vis absorption spectra, triplet transient difference absorption spectra, triplet excited-state extinction coefficients, quantum yields of the triplet excited state, and lifetimes of the triplet excited state, of 10 novel zinc phthalocyanine derivatives with mono- or tetraperipheral substituents have been systematically investigated in DMSO solution. All these complexes exhibit a wide optical window in the visible spectral range and display long triplet excited-state lifetimes (140-240 mus). It has been found that the complexes with tetrasubstituents at the alpha-positions exhibit a bathochromic shift in their UV-vis absorption spectra, fluorescence spectra, and triplet transient difference absorption spectra and have larger triplet excited-state absorption coefficients. The nonlinear absorption of these complexes has been investigated using the Z-scan technique. It is revealed that all complexes exhibit a strong reverse saturable absorption at 532 nm for nanosecond and picosecond laser pulses. The excited-state absorption cross sections were determined through a theoretical fitting of the experimental data using a five-band model. The complexes with tetrasubstituents at the alpha-positions exhibit larger ratios of triplet excited-state absorption to ground-state absorption cross sections (sigma T/sigma g) than the other complexes. In addition, the wavelength-dependent nonlinear absorption of these complexes was studied in the range of 470-550 nm with picosecond laser pulses. All complexes exhibit reverse saturable absorption in a broad visible spectral range for picosecond laser pulses. Finally, the nonlinear transmission behavior of these complexes for nanosecond laser pulses was demonstrated at 532 nm. All complexes, and especially the four alpha-tetrasubstituted complexes, exhibit stronger reverse saturable absorption than unsubstituted zinc phthalocyanines due to the larger ratio of their excited-state absorption cross sections to their respective ground-state absorption cross sections.  相似文献   

4.
We compared detailed dynamics of the excited-state absorption for C60 in solution, thin films, and entrapped in an inorganic sol-gel glass matrix. Our results demonstrate that the microscopic morphology of the C60 molecules plays a crucial role in determining the relaxation dynamics. This is a key factor for applications in optical limiting for nanosecond pulses using reverse saturable absorption. We find that the dynamics of our C60-glass composites occur on long (ns) timescales, comparable to those in solution; thin film samples, by contrast, show rapid decay (<20 picoseconds). These results demonstrate that C60-sol-gel glass composites contain C60 in a molecular dispersion, and are suitable candidates for solid-state optical limiting. Multispectral analysis of the decay dynamics in solution allows accurate determination of both the intersystem crossing time (600±100ps) and the relative strengths of the singlet and triplet excited-state cross sections as a function of wavelength from 450–950 nm. The triplet excited-state cross section is greater than that for the singlet excited-state over the range from 620–810 nm.  相似文献   

5.
The effect of the number of bromide substituents on the photophysical and nonlinear optical properties of the tetrabrominated naphthalocyanine Br4(tBu2PhO)4NcSi[OSi(Hex)3]2 (1) and the octabrominated naphthalocyanine Br8NcSi[OSi(Hex)3]2 (2) has been investigated through various spectroscopic techniques. Absorption and emission of 1 and 2 have been studied at room temperature and 77 K to determine the spectral properties of the ground and the excited states and the lifetimes and quantum yields of formation of the excited states. There is a moderate increase of the quantum yield of the triplet excited-state formation (PhiT = 0.10 vs 0.13) and a decrease of the triplet excited-state lifetime (tauT approximately 70 vs 50 mus) from 1 to 2. These can be attributed to the stronger heavy atom effect produced by the larger number of peripheral bromide substituents in 2 considering that an excited state with a triplet manifold is involved in the excitation dynamics of both complexes 1 and 2. The quantum yields of the singlet oxygen formation (PhiDelta) upon irradiation of 1 and 2 at 355 nm were also evaluated, and a value of PhiDelta(1) = PhiDelta(2) = 0.16 was obtained. In addition to that, octabrominated complex 2 displays a larger decrease of nonlinear optical transmission for nanosecond pulses at 532 nm with respect to the tetrabrominated complex 1. The nanosecond Z-scan experiments reveal that 1 and 2 exhibit both a reverse saturable absorption and a nonlinear refraction at 532 nm. However, both the sign and the magnitude of the nonlinear refraction change from 1 to 2. For picosecond Z-scan in the visible spectral region, these two complexes exhibit only reverse saturable absorption, and the excited-state absorption cross-section increases at longer wavelengths.  相似文献   

6.
A platinum complex with the 6-(7-benzothiazol-2'-yl-9,9-diethyl-9H-fluoren-2-yl)-2,2'-bipyridinyl ligand (1) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low-lying excited electronic states. Complex 1 exhibits intense structured (1)π-π* absorption at λ(abs)<440?nm, and a broad, moderate (1)MLCT/(1)LLCT transition at 440-520?nm in CH(2)Cl(2) solution. A structured (3)π-π*/(3)MLCT emission at about 590?nm was observed at room temperature and at 77?K. Complex 1 exhibits both singlet and triplet excited-state absorption from 450?nm to 750?nm, which are tentatively attributed to the (1)π-π* and (3)π-π* excited states of the 6-(7-benzothiazol-2'-yl-9,9-diethyl-9H-fluoren-2-yl)-2,2'-bipyridine ligand, respectively. Z-scan experiments were conducted by using ns and ps pulses at 532?nm, and ps pulses at a variety of visible and near-IR wavelengths. The experimental data were fitted by a five-level model by using the excited-state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited-state absorption cross sections in the visible spectral region and the effective two-photon absorption cross sections in the near-IR region. Our results demonstrate that 1 possesses large ratios of excited-state absorption cross sections relative to that of the ground-state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH(2)Cl(2) solution illuminated by ns laser pulses at 532?nm. The two-photon absorption cross sections in the near-IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two-photon-assisted excited-state absorption in the near-IR region.  相似文献   

7.
Triad hybrid multilayers containing the light sensitizers of zinc tetrapyridylporphyrin (ZnTPyP) and pyridine-functionalized TiO(2) (TiO(2)-Py) nanoparticles were constructed on substrate surfaces with the use of Pd(II) ions as the connectors using the layer-by-layer (LBL) method. The assembly process was monitored using ultraviolet-visible (UV-vis) absorption and X-ray photoelectron spectra as well as scanning electron microscopy and atomic force microscopy. The content of the pyridine substituents in the TiO(2)-Py nanocomposites was about 2% (w/w). The Soret absorption band of ZnTPyP was 24 nm red-shifted in the hybrid multilayers due to a strong intermolecular electronic coupling interaction among porphyrin macrocycles or porphyrin macrocycle/TiO(2)-Py nanoparticles. The average surface density of each ZnTPyP layer was about 1.4 × 10(-10) mol/cm(2). Aggregation of the small TiO(2)-Py nanoparticles to larger domains with sizes up to hundreds of nanometers occurred in the hybrid multilayers; however, such an aggregation behavior was weaker than that in the solutions. The quartz substrate modified with the as-prepared Pd/ZnTPyP/Pd/TiO(2)-Py triad hybrid multilayers was used as a heterogeneous photocatalyst for the degradation of methyl orange (MO) under irradiation (λ > 420 nm) at room temperature with a catalytic efficiency of about 1.3 × 10(-3) MO/ZnTPyP·s. Without the use of the filter, the catalytic efficiency increased because both ZnTPyP and TiO(2)-Py nanocomposites acted as the light sensitizers. It is suggested that the present heterogeneous catalyst has the advantages of facile separation, high stability, structural controllability on the molecular and nanoscale level, and good recyclability.  相似文献   

8.
制备了吡啶功能化的纳米二氧化硅(nanoSiO2BPy), 并利用配位键驱动的层层自组装技术, 以四吡啶基锌卟啉(ZnTPyP)为链接单元, 在nanoSiO2BPy表面构筑了含有(Pd/ZnTPyP)n多卟啉阵列结构的有机-无机杂化材料. 利用热重、 紫外-可见吸收光谱和X射线光电子能谱跟踪分析了nanoSiO2BPy@(Pd/ZnTPyP)n杂化材料的组装过程. 结果表明, nanoSiO2BPy@(Pd/ZnTPyP)3杂化材料在150~450 ℃升温区间内质量损失17%, 可归结为组装在纳米SiO2表面的多卟啉阵列和少量有机物的热分解. 紫外-可见和荧光光谱表明, 在nanoSiO2BPy@(Pd/ZnTPyP)n杂化材料中, 锌卟啉Soret带的吸收峰出现在426 nm处, 其Q带的荧光发射峰出现在605和655 nm处, 荧光寿命约为1.78 ns, 光谱数据均与锌卟啉在稀的二甲亚砜溶液中的结果接近, 表明组装在nanoSiO2BPy表面的锌卟啉环之间相互作用较弱, 没有形成聚集体. 场发射透射电镜照片显示, 由于Pd/ZnTPyP的组装, nanoSiO2BPy@(Pd/ZnTPyP)3杂化材料的平均直径由原料的10~16 nm增加到15~20 nm. 杂化材料修饰电极的循环伏安曲线在-0.6~-2.4 V(vs. Ag/AgCl)范围内出现了2对不可逆的氧化还原峰, 归属于卟啉被氧化的电子转移过程. 探讨了nanoSiO2BPy@(Pd/ZnTPyP)n杂化材料作为光敏剂在光电转换、 光催化乙基紫精的还原和显色方面的应用.  相似文献   

9.
A linear and nonlinear optical spectroscopic characterization is carried out on three azo dyes (Reactive orange 1, Reactive violet 8, and Acidproof purplish red), and on N-(p-hydroxybenzylidene)-diamino-maleonitrile. Fluorescence quantum distributions, fluorescence quantum yields, and fluorescence lifetimes are measured. The saturable absorption is studied by nonlinear transmission measurements with intense picosecond laser pulses. The ground-state absorption recovery is studied by picosecond time-resolved pump and probe measurements. Absolute ground-state absorption cross-sections, excited-state absorption cross-sections, and dye concentrations are extracted from saturable absorption studies. The azo dyes have fluorescence lifetimes and ground-state absorption recovery times of around 2 ps and their excited-state absorption cross-sections are small (measured at 527 nm) making them good mode-locking dyes for picosecond and femtosecond lasers. The investigated diamino-maleonitrile dye exhibits sub-picosecond fluorescence lifetime and slow ground-state absorption recovery (>1 ns).  相似文献   

10.
《Chemical physics letters》1986,127(4):381-386
A variety of applications exist for reverse saturable absorbers (RSAs) in laser science (RSAs are substances whose excited-state absorption cross section is larger than their ground-state absorption cross section at a given wavelength and possess a number of other properties). We propose an approach to designing RSAs at a desired wavelength by construction of dimers of dye molecules which absorb near the wavelength of interest. The dimer ground-state absorption is to a state in which the excitation is spread over both monomeric units and the excited-state absorption commences from this state to the doubly excited electronic state in which both monomeric units are excited.  相似文献   

11.
[structure: see text] A vinylene-linked porphyrin dimer, with no substituents at the beta-positions, has been synthesized by CuI/CsF promoted Stille coupling. In the crystal structure of this dimer, the C(2)H(2) bridge is twisted by 45 degrees relative to the plane of the porphyrins. The absorption, emission spectra, and electrochemistry reveal substantial porphyrin-porphyrin pi-conjugation. The triplet excited-state absorption spectrum of this dimer makes it suitable for reverse saturable absorption at 710-900 nm.  相似文献   

12.
《Chemical physics》2001,263(2-3):471-490
The triplet saturable absorption behaviour of the xanthene dyes eosin Y, erythrosin B, and rose bengal and of the fullerene molecule C70 is studied. The molecules are excited to the S1-state by intense picosecond pulses (wavelength λP=527 nm). They relax dominantly to the triplet system by intersystem crossing. The triplet–triplet saturable absorption is investigated with time-delayed intense picosecond pulses (wavelength λL=1054 nm) in the transparency region of the molecules in the singlet ground state. Higher excited-state triplet absorption cross-sections and higher excited-state triplet relaxation times are determined by numerical simulation of the experimental results. Time-resolved fluorescence measurements reveal higher excited-state triplet to singlet back-intersystem-crossing and multi-step triplet photoionization. Additionally the two-photon absorption cross-sections at λL=1054 nm are determined by measurement of the fundamental pulse two-photon induced fluorescence relative to the second-harmonic pulse single-photon induced fluorescence.  相似文献   

13.
To explore the excited-state structural dynamics of thymine, a DNA nucleobase, we measured the resonance Raman spectra of thymine in aqueous solution at wavelengths throughout the lowest-energy absorption band. Self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum using a time-dependent wave packet formalism yielded the excited-state structural dynamics. The photochemically relevant C=C stretching and C-H deformation vibrational modes were found to exhibit maximum resonance Raman intensity and structural change upon photoexcitation for thymine, suggesting that the initial dynamics of thymine lie along the photochemical reaction coordinate.  相似文献   

14.
The influence of through-bond interactions on nonadiabatic excited-state dynamics is investigated by time-resolved photoelectron spectroscopy (TRPES) and ab initio computation. We compare the dynamics of cyclohexa-1,4-diene, which exhibits a through-bond interaction known as homoconjugation (the electronic correlation between nonconjugated double bonds), with the nonconjugated cyclohexene. Each molecule was initially excited to a 3s Rydberg state using a 200 nm femtosecond pump pulse. The TRPES spectra of these molecules display similar structure and time constants on a subpicosecond time scale. Our ab initio calculations show that similar sets of conical intersections (a [1,2]- and [1,3]-hydrogen shift, as well as carbon-carbon bond cleavage) are energetically accessible to both molecules and that the geometry and orbital composition at the minimum energy crossing points to the ground state are directly analogous. These experimental and computational results suggest that the excited-state dynamics of cyclohexa-1,4-diene become localized at a single double bond and that the effects of through-bond interaction, dominant in the absorption spectrum, are absent in the excited-state dynamics. The notion of excited-state dynamics being localized at specific sites within the nuclear framework is analogous to the localization of light absorption by a subsystem within the molecule, designated a chromophore. We propose the utility of the analogous concept, denoted here as a dynamophore.  相似文献   

15.
Femtosecond time-resolved absorption and picosecond time-resolved emission measurements were carried out for highly concentrated aqueous solutions of K2[Pt(CN)4] to investigate excited-state dynamics of the [Pt(CN)42−] oligomers formed with metallophilic interactions. Time-resolved absorption spectra exhibit complicated dynamics that are represented with five time constants. Among them, the 90-ps and 400-ps dynamics were assigned to the S1 → T1 intersystem crossing of the trimer and tetramer coexisting in the solution by comparison with the fluorescence decays. Clear oscillations of transient absorption were observed in the first few picoseconds, and the frequency-detected-wavelength 2D analysis revealed that the 135-cm−1 and 65-cm−1 oscillations arise from the Pt–Pt stretch motions of the S1 trimer and S1 tetramer, respectively. The obtained time-resolved spectroscopic data provide a clear view of the excited-state dynamics of the [Pt(CN)42−] oligomers in the femto-/picosecond time region.  相似文献   

16.
Femtosecond time-resolved absorption spectroscopy has been used to elucidate the excited-state dynamics associated with formation of the (2)E excited state in a Cr(III) transition metal complex. Cr(acac)(3) (where acac is the deprotonated monoanion of acetylacetone) exhibits monophasic decay kinetics with tau = 1.1 +/- 0.1 ps following excitation into the lowest-energy ligand-field absorption band; the time constant is found to be independent of both excitation and probe wavelength across the entire (4)A(2) --> (4)T(2) absorption envelope. The lack of a significant shift in the excited-state absorption spectrum combined with the observed spectral narrowing is consistent with an assignment of this process as vibrational cooling (k(vib)) in the (2)E state. The data on Cr(acac)(3) indicate that intersystem crossing associated with the (4)T(2) --> (2)E conversion occurs at a rate k(ISC) > 10(13) s(-)(1) and furthermore competes effectively with vibrational relaxation in the initially formed (4)T(2) state. Excitation into the higher energy (4)LMCT state (lambda(ex) = 336 nm) gives rise to biphasic kinetics with tau( 1) = 50 +/- 20 fs and tau( 2) = 1.2 +/- 0.2 ps. The slower component is again assigned to vibrational cooling in the (2)E state, whereas the subpicosecond process is attributed to conversion from the charge-transfer to the ligand-field manifold. In addition to detailing a process central to the photophysics of Cr(III), these results reinforce the notion that the conventional picture of excited-state dynamics in which k(vib) > k(IC) > k(ISC) does not generally apply when describing excited-state formation in transition metal complexes.  相似文献   

17.
To elucidate the nature of low-lying triplet states and the effect of ligand modifications on the excited-state properties of functional cationic iridium complexes,the solventdependent excited-state dynamics of two phosphorescent cationic iridium (III) complexes,namely[Ir (dph-oxd)2(bpy)]PF6( 1 ) and[Ir (dph-oxd)2(pzpy)]PF6( 2 ),were investigated by femtosecond and nanosecond transient absorption spectroscopy.Upon photoexcitation to the metal-to-ligand charge-transfer (MLCT) states,the excited-state dynamics shows a rapid process (τ=0.7-3 ps) for the formation of solvent stabilized 3MLCT states,which significantly depends on the solvent polarity for both 1 and 2 .Sequentially,a relatively slow process assigned to the vibrational cooling/geometrical relaxation and a long-lived phosphorescent emissive state is identified.Due to the different excited-state electronic structures regulated by ancillary ligands,the solvation-induced stabilization of the 3MLCT state in 1 is faster than that in 2 .The present results provide a better sight of excited-state relaxation dynamics of ligand-related iridium (III) complexes and solvation effects on triplet manifolds.  相似文献   

18.
A novel four-pulse photon-echo technique for exploring condensed phase dynamics at different parts of the excited-state potential energy surface is presented. In contrast to traditional three-pulse photon-echo signals, the introduction of a fourth pump pulse allows the use of photon-echo techniques to probe excited-state phenomena. Here, a "proof of principle" experiment is presented where the excited-state solvent dynamics of the coumarin 153 chromophore dissolved in methanol is explored. The fluctuations of the stimulated emission transition is probed, in contrast to the ground-state absorption transition explored in traditional echo measurements. Distinctly different excited-state dynamics, in contrast to ground-state signals, is observed and discussed.  相似文献   

19.
Merocyanine (MC) isomers that are formed after absorption of a UV photon by 1',3'-dihydro-1',3'-3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2',2'-(2H)-indole] were studied. Several, predominantly TTC and TTT, merocyanine isomers are present in toluene solution ("T" and "C" indicate trans and cis conformations of the C-C bonds in the methine bridge). Excitation in the MC visible absorption band (at 490, 550, and 630 nm) with 100 fs laser pulses was used to study MC excited-state dynamics. Internal conversion on the picosecond time scale was found to be the dominant relaxation pathway. Excited-state isomerization reactions were also observed. Excitation at 630 nm (assigned to TTC isomer excitation) leads to formation of a third isomer (either CTC or CTT). Excitation at 490 nm (assigned to TTT isomer excitation) leads to more complex excited-state relaxation, including formation of two isomers: TTC (absorption at 600 nm) and CTC or CTT (absorption at 650 nm).  相似文献   

20.
The double pump-probe technique (DPP), first introduced by Swatton et al. [Appl. Phys. Lett. 1997, 71, 10], is a variant of the standard pump-probe method but uses two pumps instead of one to create two sets of initial conditions for solving the rate equations, allowing a unique determination of singlet- and triplet-state absorption parameters and transition rates. We investigate the advantages and limitations of the DPP theoretically and experimentally and determine the influence of several experimental parameters on its accuracy. The accuracy with which the DPP determines the triplet-state parameters improves when the fraction of the population in the triplet state relative to the ground state is increased. To simplify the analysis of the DPP, an analytical model is presented, which is applicable to both the reverse saturable and the saturable absorption regimes. We show that the DPP is optimized by working in the saturable absorption regime. Although increased accuracy is in principle achievable by increasing the pump fluence in the reverse saturable absorption range, this can cause photoinduced decomposition in photochemically unstable molecules. Alternatively, we can tune the excitation wavelength to the spectral region of larger ground-state absorption, to achieve similar accuracy. This results in an accurate separation of triplet yield and excited-state absorption cross section. If the cross section at another wavelength is then desired, a second pump-probe experiment at that wavelength can be utilized given the previously measured triplet yield under the usually valid assumption that the triplet yield is independent of excitation wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号