首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review the theory of hypercomplex numbers and hypercomplex analysis with the ultimate goal of applying them to issues related to the integration of systems of ordinary differential equations (ODEs). We introduce the notion of hypercomplexification, which allows the lifting of some results known for scalar ODEs to systems of ODEs. In particular, we provide another approach to the construction of superposition laws for some Riccati‐type systems, we obtain invariants of Abel‐type systems, we derive integrable Ermakov systems through hypercomplexification, we address the problem of linearization by hypercomplexification, and we provide a solution to the inverse problem of the calculus of variations for some systems of ODEs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Whereas Lie had linearized scalar second order ordinary differential equations (ODEs) by point transformations, and later Chern had extended to the third order by using contact transformation, till recently no work had been done for higher order (or systems) of ODEs. Lie had found a unique class defined by the number of infinitesimal symmetry generators but the more general ODEs were not so classified. Recently, classifications of higher order and systems of ODEs were provided. In this paper we relate contact symmetries of scalar ODEs with point symmetries of reduced systems. We define a new type of transformation that builds upon this relation and obtain equivalence classes of scalar third order ODEs linearizable via these transformations. Four equivalence classes of such equations are seen to exist.  相似文献   

3.
Traditionally, explicit numerical algorithms have not been used with stiff ordinary differential equations (ODEs) due to their stability. Implicit schemes are usually very expensive when used to solve systems of ODEs with very large dimension. Stabilized Runge‐Kutta methods (also called Runge–Kutta–Chebyshev methods) were proposed to try to avoid these difficulties. The Runge–Kutta methods are explicit methods with extended stability domains, usually along the negative real axis. They can easily be applied to large problem classes with low memory demand, they do not require algebra routines or the solution of large and complicated systems of nonlinear equations, and they are especially suited for discretizations using the method of lines of two and three dimensional parabolic partial differential equations. In Martín‐Vaquero and Janssen [Comput Phys Commun 180 (2009), 1802–1810], we showed that previous codes based on stabilized Runge–Kutta algorithms have some difficulties in solving problems with very large eigenvalues and we derived a new code, SERK2, based on sixth‐order polynomials. Here, we develop a new method based on second‐order polynomials with up to 250 stages and good stability properties. These methods are efficient numerical integrators of very stiff ODEs. Numerical experiments with both smooth and nonsmooth data support the efficiency and accuracy of the new algorithms when compared to other well‐known second‐order methods such as RKC and ROCK2. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

4.
In recent time, Runge-Kutta methods that integrate special third order ordinary differential equations (ODEs) directly are proposed to address efficiency issues associated with classical Runge-Kutta methods. Albeit, the methods require evaluation of three set of equations to proceed with the numerical integration. In this paper, we propose a class of multistep-like Runge-Kutta methods (hybrid methods), which integrates special third order ODEs directly. The method is completely derivative-free. Algebraic order conditions of the method are derived. Using the order conditions, a four-stage method is presented. Numerical experiment is conducted on some test problems. The method is also applied to a practical problem in Physics and engineering to ascertain its validity. Results from the experiment show that the new method is more accurate and efficient than the classical Runge-Kutta methods and a class of direct Runge-Kutta methods recently designed for special third order ODEs.  相似文献   

5.
The definition of rational Runge-Kutta methods for systems of equations is given. The equations associated with those methods are solved for the second, third and fourth order. The many free parameters in the solutions can be used to derive A- and L-stable explicit methods.  相似文献   

6.
In this paper, we investigate the positivity property for a class of 2-stage explicit Runge-Kutta (RK2) methods of order two when applied to the numerical solution of special nonlinear initial value problems (IVPs) for ordinary differential equations (ODEs). We also pay particular attention to monotonicity property. We obtain new results for positivity which are important in practical applications. We provide some numerical examples to illustrate our results.  相似文献   

7.
In recent years differential systems whose solutions evolve on manifolds of matrices have acquired a certain relevance in numerical analysis. A classical example of such a differential system is the well-known Toda flow. This paper is a partial survey of numerical methods recently proposed for approximating the solutions of ordinary differential systems evolving on matrix manifolds. In particular, some results recently obtained by the author jointly with his co-workers will be presented. We will discuss numerical techniques for isospectral and isodynamical flows where the eigenvalues of the solutions are preserved during the evolution and numerical methods for ODEs on the orthogonal group or evolving on a more general quadratic group, like the symplectic or Lorentz group. We mention some results for systems evolving on the Stiefel manifold and also review results for the numerical solution of ODEs evolving on the general linear group of matrices.  相似文献   

8.
Lie’s invariant criteria for determining whether a second order scalar equation is linearizable by point transformation have been extended to third and fourth order scalar ordinary differential equations (ODEs). By differentiating the linearizable by point transformation scalar second order ODE (respectively third order ODE) and then requiring that the original equation holds, what is called conditional linearizability by point transformation of third and fourth order scalar ODEs, is discussed. The result is that the new higher order nonlinear ODE has only two arbitrary constants available in its solution. One can use the same procedure for the third and fourth order extensions mentioned above to get conditional linearizability by point or other types of transformation of higher order scalar equations. Again, the number of arbitrary constants available will be the order of the original ODE. A classification of ODEs according to conditional linearizability by transformation and classifiability by symmetry are proposed in this paper.  相似文献   

9.
一类无条件稳定的显式方法   总被引:4,自引:0,他引:4  
孙耿 《计算数学》1983,5(3):280-294
众所周知,在使用线性方法(如线性多步法,Runge-Kutta方法,合成多步法等)对Stiff常微分方程组初值问题进行数值积分时,为了保证该初值问题数值解是稳定的,则要求数值方法在某种意义下是无条件稳定的.为此,所使用的线性方法首先必须是隐式的.在使用隐式线性方法对Stiff系统初值问题进行数值解时,每向前积分一步,往往  相似文献   

10.
Symplectic integration of autonomous Hamiltonian systems is a well-known field of study in geometric numerical integration, but for non-autonomous systems the situation is less clear, since symplectic structure requires an even number of dimensions. We show that one possible extension of symplectic methods in the autonomous setting to the non-autonomous setting is obtained by using canonical transformations. Many existing methods fit into this framework. We also perform experiments which indicate that for exponential integrators, the canonical and symmetric properties are important for good long time behaviour. In particular, the theoretical and numerical results support the well documented fact from the literature that exponential integrators for non-autonomous linear problems have superior accuracy compared to general ODE schemes.  相似文献   

11.
Numerical integration of ODEs by standard numerical methods reduces continuous time problems to discrete time problems. Discrete time problems have intrinsic properties that are absent in continuous time problems. As a result, numerical solution of an ODE may demonstrate dynamical phenomena that are absent in the original ODE. We show that numerical integration of systems with one fast rotating phase leads to a situation of such kind: numerical solution demonstrates phenomenon of scattering on resonances that is absent in the original system.  相似文献   

12.
We consider splitting methods for the numerical integration of separable non-autonomous differential equations. In recent years, splitting methods have been extensively used as geometric numerical integrators showing excellent performances (both qualitatively and quantitatively) when applied on many problems. They are designed for autonomous separable systems, and a substantial number of methods tailored for different structures of the equations have recently appeared. Splitting methods have also been used for separable non-autonomous problems either by solving each non-autonomous part separately or after each vector field is frozen properly. We show that both procedures correspond to introducing the time as two new coordinates. We generalize these results by considering the time as one or more further coordinates which can be integrated following either of the previous two techniques. We show that the performance as well as the order of the final method can strongly depend on the particular choice. We present a simple analysis which, in many relevant cases, allows one to choose the most appropriate split to retain the high performance the methods show on the autonomous problems. This technique is applied to different problems and its performance is illustrated for several numerical examples.  相似文献   

13.
We study preconditioned iterative methods for the linear systems arising in the numerical integration of ODEs and time-dependent PDEs by implicit Runge-Kutta and boundary value methods. A preconditioning strategy based on a Kronecker product splitting of the coefficient matrix is proposed, and some useful properties of the preconditioned matrix are established. Numerical examples are presented to illustrate the effectiveness of this approach.  相似文献   

14.
This paper considers the numerical solution of optimal control problems based on ODEs. We assume that an explicit Runge-Kutta method is applied to integrate the state equation in the context of a recursive discretization approach. To compute the gradient of the cost function, one may employ Automatic Differentiation (AD). This paper presents the integration schemes that are automatically generated when differentiating the discretization of the state equation using AD. We show that they can be seen as discretization methods for the sensitivity and adjoint differential equation of the underlying control problem. Furthermore, we prove that the convergence rate of the scheme automatically derived for the sensitivity equation coincides with the convergence rate of the integration scheme for the state equation. Under mild additional assumptions on the coefficients of the integration scheme for the state equation, we show a similar result for the scheme automatically derived for the adjoint equation. Numerical results illustrate the presented theoretical results.  相似文献   

15.
In this paper, we consider an initial value problem for a class of generalized ODEs, also known as Kurzweil equations, and we prove the existence of a local semidynamical system there. Under certain perturbation conditions, we also show that this class of generalized ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynamical system. As a consequence, we obtain LaSalle's invariance principle for such a class of generalized ODEs. Due to the importance of LaSalle's invariance principle in studying stability of differential systems, we include an application to autonomous ordinary differential systems with impulse action at variable times.  相似文献   

16.
Many stiff systems of ordinary differential equations (ODEs) modeling practical problems can be partitioned into loosely coupled subsystems. In this paper the objective of the partitioning is to permit the numerical integration of one time step to be performed as the solution of a sequence of small subproblems. This reduces the computational complexity compared to solving one large system and permits efficient parallel execution under appropriate conditions. The subsystems are integrated using methods based on low order backward differentiation formulas.This paper presents an adaptive partitioning algorithm based on a classical graph algorithm and techniques for the efficient evaluation of the error introduced by the partitioning.The power of the adaptive partitioning algorithm is demonstrated by a real world example, a variable step-size integration algorithm which solves a system of ODEs originating from chemical reaction kinetics. The computational savings are substantial. In memory of Germund Dahlquist (1925–2005).AMS subject classification (2000) 65L06, 65Y05  相似文献   

17.
线性常微分方程初值问题求解在许多应用中起着重要作用.目前,已存在很多的数值方法和求解器用于计算离散网格点上的近似解,但很少有对全局误差(global error)进行估计和优化的方法.本文首先通过将离散数值解插值成为可微函数用来定义方程的残差;再给出残差与近似解的关系定理并推导出全局误差的上界;然后以最小化残差的二范数为目标将方程求解问题转化为优化求解问题;最后通过分析导出矩阵的结构,提出利用共轭梯度法对其进行求解.之后将该方法应用于滤波电路和汽车悬架系统等实际问题.实验分析表明,本文估计方法对线性常微分方程的初值问题的全局误差具有比较好的估计效果,优化求解方法能够在不增加网格点的情形下求解出线性常微分方程在插值解空间中的全局最优解.  相似文献   

18.
We use operator identities in order to solve linear homogeneous matrix difference and differential equations and we obtain several explicit formulas for the exponential and for the powers of a matrix as an example of our methods. Using divided differences we find solutions of some scalar initial value problems and we show how the solution of matrix equations is related to polynomial interpolation.  相似文献   

19.
This paper deals with the numerical solution of optimal control problems for ODEs. The methods considered here rely on some standard optimization code to solve a discretized version of the control problem under consideration. We aim to make available to the optimization software not only the discrete objective functional, but also its gradient. The objective gradient can be computed either from forward (sensitivity) information or backward (adjoint) information. The purpose of this paper is to discuss various ways of adjoint computation. It will be shown both theoretically and numerically that methods based on the continuous adjoint equation require a careful choice of both the integrator and gradient assembly formulas in order to obtain a gradient consistent with the discretized control problem. Particular attention is given to automatic differentiation techniques which generate automatically a suitable integrator.  相似文献   

20.
By introducing a variable substitution, we transform the two‐point boundary value problem of a third‐order ordinary differential equation into a system of two second‐order ordinary differential equations (ODEs). We discretize this order‐reduced system of ODEs by both sinc‐collocation and sinc‐Galerkin methods, and average these two discretized linear systems to obtain the target system of linear equations. We prove that the discrete solution resulting from the linear system converges exponentially to the true solution of the order‐reduced system of ODEs. The coefficient matrix of the linear system is of block two‐by‐two structure, and each of its blocks is a combination of Toeplitz and diagonal matrices. Because of its algebraic properties and matrix structures, the linear system can be effectively solved by Krylov subspace iteration methods such as GMRES preconditioned by block‐diagonal matrices. We demonstrate that the eigenvalues of certain approximation to the preconditioned matrix are uniformly bounded within a rectangle on the complex plane independent of the size of the discretized linear system, and we use numerical examples to illustrate the feasibility and effectiveness of this new approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号