首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal and photochemical reactions of the methylal radical cation /I/ in freon matrices were studied using selective deuteration for elucidating the structure of the resulting species. /I/ has been shown to decay by unimolecular reaction upon heating to 140 K as well as upon photolysis in CFCl3 matrix and the product of decay has been assumed to be the complex of formaldehyde radical cation with CFCl3. Such decay reaction has been demonstrated for 1,3-dioxolan radical cation as well.  相似文献   

2.
The thermal unimolecular decomposition of hex-1-yne has been investigated over the temperature range of 903–1153 K using the technique of very low-pressure pyrolysis (VLPP). The reaction proceeds via the competitive pathways of C3? C4 fission and molecular retro-ene decomposition, with the latter being the major pathway under the experimental conditions. RRKM calculations, generalized to take into account two competing pathways, show that the experimental unimolecular rate constants are consistent with the high-pressure Arrhenius parameters at 1100 K given by and where θ = 2.303 RT kcal/mol and the A factors were assigned from the results of recent shock-tube studies of hex-1-yne and related alkynes. The results for C? C fission are consistent with previous VLPP and shock-tube determinations of the propargyl resonance energy, and the parameters for the molecular pathway are consistent with systematic trends for the retro–ene decomposition of unsaturated hydrocarbons.  相似文献   

3.
The conformational distribution and unimolecular decomposition pathways for the n-propylperoxy radical have been generated at the CBS-QB3, B3LYP/6-31+G and mPW1K/6-31+G levels of theory. At each of the theoretical levels, the 298 K Boltzmann distributions and rotational profiles indicate that all five unique rotamers of the n-propylperoxy radical can be expected to be present in significant concentrations at thermal equilibrium. At the CBS-QB3 level, the 298 K distribution of rotamers is predicted to be 28.1, 26.4, 19.6, 14.0, and 11.9% for the gG, tG, gT, gG', and tT conformations, respectively. The CBS-QB3 C-OO bond dissociation energy (DeltaH298 K) for the n-propylperoxy radical has been calculated to be 36.1 kcal/mol. The detailed CBS-QB3 potential energy surface for the unimolecular decomposition of the n-propylperoxy radical indicates that important bimolecular products could be derived from two 1,4-H transfer mechanisms available at T < 500 K, primarily via an activated n-propylperoxy adduct.  相似文献   

4.
The CH3 + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH3 + OH barrierless association reaction and for the H + CH2OH and H + CH3O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH3 + OH --> 3CH2 + H2O abstraction reaction and the H2 + HCOH and H2 + H2CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The 1CH2 + H2O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH3 + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.  相似文献   

5.
For plasma enhanced and catalytic chemical vapor deposition (PECVD and Cat‐CVD) processes using small silanes as precursors, disilanyl radical (Si2H5) is a potential reactive intermediate involved in various chemical reactions. For modeling and optimization of homogeneous a‐Si:H film growth on large‐area substrates, we have investigated the kinetics and mechanisms for the thermal decomposition of Si2H5 producing smaller silicon hydrides including SiH, SiH2, SiH3, and Si2H4, and the related reverse reactions involving these species by using ab initio molecular‐orbital calculations. The results show that the lowest energy path is the production of SiH + SiH4 that proceeds via a transition state with a barrier of 33.4 kcal/mol relative to Si2H5. Additionally, the dissociation energies for breaking the Si? Si and H? SiH2 bonds were predicted to be 53.4 and 61.4 kcal/mol, respectively. To validate the predicted enthalpies of reaction, we have evaluated the enthalpies of formation for SiH, SiH2, HSiSiH2, and Si2H4(C2h) at 0 K by using the isodesmic reactions, such as 2HSiSiH2 + 1C2H61Si2H6 + 2HCCH2 and 1Si2H4(C2h) + 1C2H61Si2H6 + 1C2H4. The results of SiH (87.2 kcal/mol), SiH2 (64.9 kcal/mol), HSiSiH2 (98.0 kcal/mol), and Si2H4 (68.9 kcal/mol) agree reasonably well previous published data. Furthermore, the rate constants for the decomposition of Si2H5 and the related bimolecular reverse reactions have been predicted and tabulated for different T, P‐conditions with variational Rice–Ramsperger–Kassel–Marcus (RRKM) theory by solving the master equation. The result indicates that the formation of SiH + SiH4 product pair is most favored in the decomposition as well as in the bimolecular reactions of SiH2 + SiH3, HSiSiH2 + H2, and Si2H4(C2h) + H under T, P‐conditions typically used in PECVD and Cat‐CVD. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The thermal unimolecular decomposition of hex-1-ene-3-yne (HEY) has been investigated over the temperature range 949–1230 K using the technique of very low-pressure pyrolysis (VLPP). One reaction pathway is the expected C5? C6 bond fission to form the resonance-stabilized 3-ethenylpropargyl radical. There is a concurrent process producing molecular hydrogen which probably occurs via the intermediate formation of hexatrienes and cyclohexa-1,3-diene. RRKM calculations yield the extrapolated high-pressure rate parameters at 1100 K given by the expressions 1016.0±0.3 exp(?300.4 ± 12.6 kJ mol?1/RT) s?1 for bond fission and 1013.2+0.4 exp(?247.7 ± 8.4 kJ mol?1/RT) for the overall formation of hydrogen. The A factors were assigned from the results of previous studies of related alkynes, alkenes, and alkadienes. The activation energy for the bond fission reaction leads to ΔH [H2CCHCC?H2] = 391.9, DH [H2CCHCCCH2? H] = 363.3, and a resonance stabilization energy of 56.9 ± 14.0 kJ mol?1 for the 3-ethenylpropargyl radical, based on a value of 420.2 kJ mol?1 for the primary C? H bond dissociation energy in alkanes. Comparison with the revised value of 46.6 kJ mol?1 for the resonance energy of the unsubstituted propargyl radical indicates that the ethenyl substituent (CH2?CH) on the terminal carbon atom has only a small effect on the propargyl resonance energy. © John Wiley & Sons, Inc.  相似文献   

7.
Theoretical studies of the NTO unimolecular decomposition   总被引:1,自引:0,他引:1  
This work studies 39 decomposition paths among 18 intermediates and 14 transition states. Three types of intra-molecular proton migration and the direct scission of C–NO2 were regarded as the initial steps of the unimolecular decomposition of NTO. The activation energies of the radicalization C–NO2 homolysis step are 79.158, 79.781 and 80.652 kcal mol−1. The activation energies of the ionization C–NO−12 scission step are 262.488, 263.138 and 272.278 kcal mol−1. The bottle neck activation energies of the C–NO2H cleavage are 54.936, 63.257 and 71.247 kcal mol−1. Two paths have the smallest bottle neck activation energy. Both of them have two proton migration steps and one internal rotation step prior to C–NO2H cleavage. At lower temperatures, energy accumulated slowly. When the energy is high enough and reaction time is long enough for structure transformation, these two mechanisms should be the most probable decomposition paths. At high temperatures, the shortest (four steps) mechanism which goes through radicalization C–NO2 scission should be the dominant path. There are five tautomers found in this study. Four of them are intra-molecular proton migration tautomers. The other one is an internal rotational tautomer. Their energy barriers for structure transfer are lower than any of the activation energies of the decomposition reactions. It may be regarded as one explanation of the insensitive property of NTO.  相似文献   

8.
9.
The thermal unimolecular decomposition of bromocyclobutane has been investigated over the temperature range of 791–1224 K using the technique of very low-pressure pyrolysis (VLPP). HBr elimination is the sole mode of decomposition under the experimental conditions. No evidence could be found for the ring-cleavage pathway to ethylene and vinyl bromide. Assuming a four-center transition state and an Arrhenius A factor the same as that for HCl elimination from chlorocyclobutane, RRKM calculations show that the experimental unimolecular rate constants are consistent with the Arrhenius expression where θ = 2.303RT kcal/mol. The activation energy is higher than that for the open-chain analog, 2? bromobutane. This finding is consistent with the results for the corresponding chloro and iodo compounds.  相似文献   

10.
The potential energy surface for the unimolecular decomposition of thiophenol (C(6)H(5)SH) is mapped out at two theoretical levels; BB1K/GTlarge and QCISD(T)/6-311+G(2d,p)//MP2/6-31G(d,p). Calculated reaction rate constants at the high pressure limit indicate that the major initial channel is the formation of C(6)H(6)S at all temperatures. Above 1000 K, the contribution from direct fission of the S-H bond becomes important. Other decomposition channels, including expulsion of H(2) and H(2)S are of negligible importance. The formation of C(6)H(6)S is predicted to be strong-pressure dependent above 900 K. Further decomposition of C(6)H(6)S produces CS and C(5)H(6). Overall, despite the significant difference in bond dissociation, i.e., 8-9 kcal/mol between the S-H bond in thiophenol and the O-H bond in phenol, H migration at the ortho position in the two molecules represents the most accessible initial channel.  相似文献   

11.
The kinetics of radical decomposition of di(tert-butyl) trioxide was studied by spectrophotometry from the consumption of an acceptor of free radicals, 2,6-di(tert-butyl)-4-methylphenol, in CFCl3 and CH2Cl2 (in the latter case, in the presence of 0.1M ButOOH). The activation parameters of the reaction (log(A/s −1)=14.8±1.2 and 14.1±1.6,E a=21.6±1.4 and 20.1±1.9 kcal mol−1 in CFCl3 and CH2Cl2, respectively) and the probability of radical escape to the bulk (e=0.9±0.1) were determined. The known experimental and calculated values of the O−OO bond strength in trioxides were analyzed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 61–65, January, 1999.  相似文献   

12.
Partitioning Hilbert space into two subspaces by using orthogonal projection operators yields compact forms for effective Hamiltonians for each of the subspaces. When one (the Q space) contains molecular bound states and the other (the P space) contains dissociative continua, a simple form for the non-Hermitian Q-space effective Hamiltonian, H(eff), can be obtained, subject to reasonable approximations. Namely, H(eff) = H0 - ivariant Planck's/2pi Gamma/2, where H0 is Hermitian, and the width operator variant Planck's/2pi Gamma accounts for couplings of the Q-space levels to the P-space continua. The P/Q partitioning procedure has been applied in many areas of atomic, molecular, and nuclear physics with widespread success. Inputting into this formalism ideas from random matrix theory in order to model independent open channels yields the random matrix H(eff) model. Despite numerous efforts, this model has failed to model satisfactorily the statistical transition-state theory of unimolecular decomposition (hereafter referred to as TST) in the regime of overlapping resonances, where nearly all such reactions occur. All statistical models of unimolecular decomposition are premised on rapid intramolecular vibrational redistribution (IVR) for a given set of good quantum numbers. The phase space thus accessed results in a threshold reaction rate of 1/h rho, and for K independent open channels, the rate is K/h rho. This reaction rate corresponds to a resonance width of K/2pi rho, and when K increases, the resonances (which are rho(-1) apart) overlap. In this regime, the random matrix H(eff) model fails because it does not introduce independent open channels. To illustrate the source of the problem, an analysis is carried out of a simple model that is obviously and manifestly inconsistent with TST. This model is solved exactly, and it is then put in the form of the random matrix H(eff) model, illustrating the one-to-one correspondence. This reveals the deficiencies of the latter. In manipulating this model into the form H0 - ivariant Planck's/2pi Gamma/2, it becomes clear that the independent open channels in the random matrix H(eff) model are inconsistent with TST. Rather, this model is one of gateway states (i.e., bound states that are coupled to their respective continua as well as to a manifold of zero-order bound states, none of which are coupled directly to the continua). Despite the fact that the effective Hamiltonian method is, by itself, beyond reproach, the random matrix H(eff) model is flawed as a model of unimolecular decomposition in several respects, most notably, bifurcations of the distributions of resonance widths in the regime of overlapping resonances.  相似文献   

13.
用量子化学B3LYP/6 - 311+G(d,p)方法优化了H2ClCS单分子分解反应驻点物种的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证.用QCISD(T)/6-311++G(d,p)方法计算各物种的单点能,并对总能量进行了零点能校正.利用经典过渡态理论(TST)与...  相似文献   

14.
Nonempirical quantum-chemical calculations have been performed in the 4-31G basis on the equilibrium geometry and vibrational frequencies of difluorochloromethane, as well as on the transition state in the decomposition CHF2ClCF2+HCl. The potentialenergy surface has been constructed and a simplified 1D dynamic model has been formulated for the reaction, which is based on dividing the degrees of freedom into active (dynamic) and adiabatic ones. Measurements on the reaction kinetics have been analyzed from calculations on the rate constant from the RRKM theory and within the framework of the 1D model.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 3, pp. 274–281, May–June 1987.I am indebted to M. V. Bazilevskii, M. Ya. Gol'denberg, S. Ya. Umanskii, A. I. Voronin, and M. A. Teitel'boim for useful discussions.  相似文献   

15.
Nitrones such as 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide (EMPO) have become the spin-traps of choice for the detection of transient radical species in chemical and biological systems using electron paramagnetic resonance (EPR) spectroscopy. The mechanism of decomposition of the superoxide radical anion (O2(.-)) adducts of DMPO, DEPMPO and EMPO in aqueous solutions was investigated. Our findings suggest that nitric oxide (NO) was formed during the decomposition of the O2(.-) adduct as detected by EPR spin trapping using Fe(II)N-methyl-d-glucamine dithiocarbamate (MGD). Nitric oxide release was observed from the O2(.-) adduct formed from hypoxanthine-xanthine oxidase, PMA-activated human neutrophils, and DMSO solution of KO2. Nitric oxide formation was not observed from the independently generated hydroxyl radical adduct. Formation of nitric oxide was also indirectly detected as nitrite (NO2(.-)) utilizing the Griess assay. Nitrite concentration increases with increasing O2(.-) concentration at constant DMPO concentration, while NO2(.-) formation is suppressed at anaerobic conditions. Moreover, large excess of DMPO also inhibits NO2(.-) formation which can be attributed to the oxidation of DMPO to hydroxamic acid nitroxide (DMPO-X) by nitrogen dioxide (NO2), a precursor to NO2(.-). Product analysis was also conducted to further elucidate the mechanism of adduct decay using gas chromatography-mass spectrometry (GC-MS) technique.  相似文献   

16.
The gas phase thermal decomposition of triallylamine was studied in the temperature range 531 to 620 K. The major products observed in the reaction were propylene and 3-picoline. The first order rate constants for depletion of triallylamine, obtained using the internal standard technique, are found to be independent of pressure and conversion, and fit the Arrheniusrelationship The reaction appears to be homogeneous, as a 15-fold change in thc surface-to-volume ratio of the vessel left the rate constants unchanged. The Arrhenius parameters are consistent with a molecular elimination reaction involving a six-center transition state, yielding propylene and N-allyl-prop-2-enaldimine. It is proposed that the latter product undergoes a 1,5-hydrogen transfer, followed by a ring closure reaction to yield dihydropicoline, which in turn reacts forming 3-picoline via a self-initiated decomposition reaction.  相似文献   

17.
The classical trajectory method is used to investigate the unimolecular dynamics of ethyl radical dissociation. It is found that chaotic trajectories need not be backward integrable to yield accurate lifetime, and product energy and angular momenta distributions. This allows the use of large numerical integration step sizes in trajectory calculations. The product energy and angular momenta distributions are independent of the ethyl radical lifetime, and are obtained after only 50 dissociation events. Differences between classical and quantal unimolecular dynamics are discussed, and a prognosis for future trajectory studies of large-molecule unimolecular decompositions is given.  相似文献   

18.
The unimolecular decomposition processes of ethylene glycol have been investigated with the QCISD(T) method with geometries optimized at the B3LYP/6-311++G(d,p) level. Among the decomposition channels identified, the H(2)O-elimination channels have the lowest barriers, and the C-C bond dissociation is the lowest-energy dissociation channel among the barrierless reactions (the direct bond cleavage reactions). The temperature and pressure dependent rate constant calculations show that the H(2)O-elimination reactions are predominant at low temperature, whereas at high temperature, the direct C-C bond dissociation reaction is dominant. At 1 atm, in the temperature range 500-2000 K, the calculated rate constant is expressed to be 7.63 × 10(47)T(-10.38) exp(-42262/T) for the channel CH(2)OHCH(2)OH → CH(2)CHOH + H(2)O, and 2.48 × 10(51)T(-11.58) exp(-43593/T) for the channel CH(2)OHCH(2)OH → CH(3)CHO + H(2)O, whereas for the direct bond dissociation reaction CH(2)OHCH(2)OH → CH(2)OH + CH(2)OH the rate constant expression is 1.04 × 10(71)T(-16.16) exp(-52414/T).  相似文献   

19.
[reaction: see text] Deprotonation of the radical cations of aromatic amines, such as anilines, generally occurs much more slowly than other fragmentation reactions. Here we report a stereoelectronic effect involving twisting of the anilino group out of the plane of the benzene ring that results in a significantly increased rate of reactivity toward deprotonation. Quantitative studies of the rate constants for deprotonation as a function of aniline radical cation pKa (Br?nsted plots) demonstrate that the effect is not simply due to a change in the reaction thermodynamics. By combining this stereoelectronic effect with covalent attachment of carboxylate as a base, aniline radical cations that undergo unimolecular deprotonation with rate constants as high as 10(8) s(-1), even in unfavorable protic media, are described.  相似文献   

20.
Alternative versions of gas-phase unimolecular decomposition of six isomeric trinitrotoluenes, in particular homolytic dissociation of Carom–NO2 and Carom–CH3 bonds, nitro–nitrite rearrangement, intramolecular hydrogen transfer from the methyl group to nitro group with formation of aci-trinitrotoluenes, and formation of various bicyclic intermediates, have been simulated at the B3LYP/6-31+G(2df,p) level of theory. Except for 3,4,5-trinitrotoluene, the most energetically favorable for all other examined trinitrotoluenes is intramolecular hydrogen transfer. 3,4,5-Trinitrotoluene preferentially decomposes via formation of [6 + 4]-bicyclic intermediates or homolytic dissociation of the Carom–NO2 bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号