首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dilatometric measurements of excess volume VE and ultrasonic speed u have been carried out for mixtures of mono-, di-, tri- and tetra(ethylene glycol)s in pyrrolidin-2-one (PY) over the whole mole fraction range at 303.15 K. In the mixture of PY and monoethylene glycol, the VE is positive except for slight negative variation at the high mole fraction of PY. The other three mixtures PY + di-, + tri- and + tetra(ethylene glycol)s show negative VE over the entire composition range in the order di-u with increase in the mole fraction of PY in the case of monoethylene glycol while for other three systems u rises. From these measurements, partial molar quantities ViE and KS,iE have been calculated and analysed. Estimates of isentropic molar quantity KS equal to −(∂V/∂p)S and its excess counterpart KSE have also been computed. The KSE is positive for mono-, and negative for all the other mixtures over the whole composition range.  相似文献   

2.
2-Methyl pyrazine (2MP) has led to significant interest for its industrial and pharmaceutical uses. The new vapor–liquid equilibria (VLE) at 353.15 K and excess molar volumes (VE) at 298.15 K over the whole mole fraction range for seven binaries (water, n-hexane, cyclohexane, n-heptane, methylcyclopentane (MCP), methylcyclohexane (MCH) and ethyl acetate (EA) with 2MP) have been measured. VLE were measured by using headspace gas chromatography and VE were determined using precision density meter. The water+2MP system has only the minimum boiling azeotrope. The experimental VLE and VE data were well correlated in terms of common gE models and Redlich–Kister equation, respectively.  相似文献   

3.
Excess molar volumes, VE, and partial molar volumes, i, have been calculated for binary liquid mixtures of anisole with bromobenzene, o-dichlorobenzene, o-chloroaniline and p-dioxane from the results of densities measured at 298.15, 303.15, 308.15 and 313.15 K over the entire range of composition. In the temperature interval studied the values of VE are positive for anisole + p-dioxane, anisole + bromobenzene and anisole + o-dichlorobenzene, whereas negative values are observed for anisole + o-chloroaniline. The negative VE for the latter system was due to specific interactions between mixing components. The positive VE for the remaining systems was ascribed to the dispersion-type interactions.  相似文献   

4.
Excess molar volumes, VmE, at 298.15 K and atmospheric pressure over the entire composition range for binary mixtures of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol and 1-octanol with dipropylamine are reported from densities measured with a vibrating-tube densimeter. All the excess volumes are large and negative over the whole mole fraction range, indicating strong interactions between unlike molecules, which are more important for the system involving methanol, characterized by the most negative VmE. For the remainder mixtures, VmE at equimolar composition, is approximately constant. The VmE curves are nearly symmetrical.

VmE and excess molar enthalpies, HmE, of the mixtures studied are consistently described by the ERAS model. The ERAS parameters confirm that the strongest interactions between unlike molecules are encountered in the methanol+dipropylamine system.  相似文献   


5.
Experimental results are reported of excess molar volumes VE and excess molar enthalpies HE for binary mixtures of 1-propanol, 2-propanol, 1-butanol and 2-butanol with diisopropyl ether (DIPE) and dibutyl ether (DBE) at 298.15 K. A vibrating-tube densitometer was used to determine VE, and HE was measured using a quasi-isothermal flow calorimeter. The applicability of the ERAS model has been investigated for describing the experimental data as well as literature data of alkanol-ether mixtures containing DBE or dipropyl ether (DPE).  相似文献   

6.
Excess molar enthalpies HE and excess molar volumes VE have been measured, as a function of mole fraction x1, at 298.15 K and atmospheric pressure for the five liquid mixtures (x11,4-C6H4F2 + x2n-ClH2l+2), l = 7, 8, 10, 12 and 16. In addition, HE and excess molar heat capacities CPE at constant pressure have been determined for the two liquid mixtures (x1C6F6 + x2n-ClH2l+2), l = 7 and 14, at the same temperature and pressure. The instruments used were flow microcalorimeters of the Picker design (the HE version was equipped with separators) and a vibrating-tube densimeter, respectively.

The excess enthalpies of the five difluorobenzene mixtures are all positive and quite large; they increase with increasing chain length l of the n-alkane from HE(x1 = 0.5)/(J mol−1) = 1050 for l = 7 to 1359 for l = 16. The corresponding excess volumes VE are all positive and also increase with increasing l: VE(x1 = 0.5)/(cm3 mol−1) = 0.650 for l = 7 and 1.080 for l = 16. Interestingly, the excess enthalphies of the corresponding mixtures with hexafluorobenzene are only about 5% larger, whereas the excess volumes of (x1C6F6 + x2n-ClH2l+2) are roughly twice as large as those of their counterparts in the series containing 1,4-C6H4F2. Specifically, at 298.15 K HE(x1 = 0.5)/(J mol−1) = 1119 for (x1C6F6 + x2n-C7H16) and 1324 for (x1C6F6 + x2n-C14H30), and for the same mixtures VE(x1 = 0.5)/(cm3 mol−1) = 1.882 and 2.093, respectively. The excess heat capacities for both systems are negative and of about the same magnitude as the excess heat capacities of mixtures of fluorobenzene with the same n-alkanes (Roux et al., 1984): CPE(x1 = 0.5)/(J K−1 mol−1) = −1.18 for (x1C6F6 + x2n-C7H16), and −2.25 for (x1C6F6 + x2n-C14H30). The curve CPE vs. (x1 for x1C6F6 + x2n-C14H30) shows a sort of “hump” for x1 0.5, which is presumed to indicate emerging W-shape composition dependence at lower temperatures.  相似文献   


7.
New experimental data of densities and surface tensions are presented for the binary mixtures of the ionic liquid 1-ethyl-3- methyl imidazolium nitrate([EMIM]NO3) with methanol and ethanol.Measurements were performed at 298.15 K and atmospheric pressure,covering the whole composition range.Excess molar volumes VE and the surface tension deviations Sy have been determined.For the excess molar volumes of binary mixture,there is a region of negative VE at low IL mole fraction,passing through a minimum and then VE increases and becomes positive,showing maximum at higher IL mole fraction.It is shown that the surface tension deviations Sy of[EMIM]NO3 + methanol system are positive but those of[EMIM]NO3 + ethanol system are negative over the entire mole fraction range.  相似文献   

8.
Volume changes on mixing of ternary liquid mixtures of N,N-dimethylformamide and diethyl ketone with 1-alkanols have been measured as a function of composition at 303.15 K. The alkanols include 1-propanol, 1-butanol, 1-pentanol and 1-hexanol. The measured VE values are negative in the mixtures of N,N-dimethylformamide, diethyl ketone and 1-propanol, or 1-butanol. The VE data exhibits an inversion in sign in the mixture containing 1-pentanol and positive excess volumes are observed in the mixture containing 1-hexanol. The measured data are compared with predicted values based upon empirical relations. The excess volume for the binary mixture of N,N-dimethylformamide with diethyl ketone has been measured over the entire range of composition at 303.15 K. The VE values are negative for the binary mixture.  相似文献   

9.
Methyl tert-butyl ether (MTBE) is recently widely used in the chemical and petrochemical industry as a non-polluting octane booster for gasoline and as an organic solvent. The isobaric or isothermal vapor–liquid equilibria (VLE) were determined directly for MTBE+C1–C4 alcohols. The excess enthalpy (HE) for butane+MTBE or isobutene+MTBE and excess volume (VE) for MTBE+C3–C4 alcohols were also determined. Besides, the infinite dilute activity coefficient, partial molar excess enthalpies and volumes at infinite dilution (γ, HE,∞, VE,∞) were calculated from measured data. Each experimental data were correlated with various gE models or empirical polynomial.  相似文献   

10.
New experimental data of the molar excess enthalpy HE of mixtures containing eight liquids - propylamine + methanol, ethanol, propan-1-ol, butan-1-ol, butylamine + methanol, ethanol, propan-1-ol, butan-1-ol - are presented using a quasi-isothermal flow calorimeter. The results are used for testing the ERAS-model which provides a theoretical concept accounting for the self-association and cross-association of alcohol and amine molecules, as well as for non-associative intermolecular interactions. Excess molar volumes VE are also successfully described by the model. It turns out that the strong cross-association occurring between alcohol and amine molecules is the predominant reason for the remarkably low exothermic values of HE observed for the mixtures studied.  相似文献   

11.
This paper reports excess molar enthalpies, HmE, and excess molar volumes, VmE, of the binary systems {propyl propanoate + o-xylene}, {propyl propanoate + m-xylene} and {propyl propanoate + p-xylene} at the temperature 298.15 K and atmospheric pressure, over the whole composition range. VmE was calculated from the experimental measurement of the corresponding densities, while HmE was measured directly. The excess magnitudes were correlated to a Redlich-Kister type equation. Finally, we will discuss the results of the three mixtures studied here and by comparison with other binary systems containing propyl propanoate and a benzene-based compound previously published.  相似文献   

12.
Densities and relative permittivities at T = (293.15, 298.15, and 303.15) K in the binary liquid mixtures of 2-propoxyethanol with diethylene glycol, triethylene glycol, and tetraethylene glycol have been measured over the entire mixture compositions. These data have been used to compute the excess molar volumes and deviations of the relative permittivity. The results are discussed in terms of intermolecular interactions in the bulk of studied the binary mixtures.  相似文献   

13.
《Fluid Phase Equilibria》1997,130(1-2):207-222
The excess molar volumes, VmE, have been calculated from measured density values over the whole composition range at the temperatures 298.15 K and 308.15 K and under atmospheric pressure for the 12 mixtures {hydrocarbon (heptane, 2,2,4-trimethylpentane, 1-heptene or toluene) + branched chain ether (methyl 1,1-dimethylethyl ether, ethyl 1,1-dimethylethyl ether or methyl 1,1-dimethylpropyl ether)}. The excess volumes of all the mixtures except (toluene + ether) are positive over the whole composition range. The experimental results have been correlated and compared with the results from Prigogine-Flory-Patterson (PFP) theory.  相似文献   

14.
Excess viscosities, ηE and molar excess volumes VE were obtained for binary mixtures of 1,2-dichloroethane and chlorinated methanes and for pseudobinary mixtures of 1,2-dichloroethane and equimolar binary mixtures from chlorinated methanes at 303.15 K. The chlorinated methanes include carbon tetrachloride, chloroform and dichloromethane. Grunberg—Nissan interaction parameter d and interaction energy for flow of activation Wvis were also presented. The relationship between the ηE's and the VE's has been quantitively considered using Singh's equations. The excess viscosities for all the systems are negative over the entire compositions. There are specific interactions between 1,2-dichloroethane and chlorinated methanes, but the specific interactions are not strong. The interactions of 1,2-dichloroethane with chlorinated methanes decrease in the order: chloroform > dichloromethane > carbon tetrachloride. ‘Pseudochloroform’ has been defined by us for the first time as the equimolar mixture of dichloromethane and carbon tetrachloride.  相似文献   

15.
We have measured excess molar volumes VE m of binary mixtures of triethylene glycol monoethyl ether with methanol, ethanol, 1-propanol, 1-pentanol, and 1-hexanol over the full range of compositions at 25°C. The measurements were carried out with a continuous-dilution dilatometer. The excess molar volumes VE m are negative over the entire range of composition for the systems triethylene glycol monoethyl ether + methanol, + ethanol, and + 1-propanol and positive for the remaining systems, triethylene glycol monoethyl ether + 1-pentanol, and + 1-hexanol. The excess VE m increases in the positive direction with increasing chain length of the n-alcohol. The measured excess volumes have been compared to our previous published data with an effort to assess the effects of replacing methyl by ethyl groups and of inserting oxyethylene groups. The results have been used to estimate the excess partial molar volumes VE m,i of the components. The behavior of VE m and VE m,i with composition and the number of carbon atoms in the alcohol molecule is discussed.  相似文献   

16.
Molar excess enthalpies HmE, isobaric heat capacities CP,mE, volumes VmE and isothermal compressibilities κTE for the 1,3-dioxane(3DX) + cyclohexane mixture were measured at 298.15 K, in order to compare to those of the 1,4-dioxane(4DX) + cyclohexane mixture. HmE is endothermic and the maximum value about 1.5 kJ mol−1 at x ≈ 0.45, and lower than that of the 4DX mixture by about 80 J mol−1. VmE is positive over the whole concentration and the maximum value is about 0.85 cm3 mol−1 at x ≈ 0.45, and lower than that of the 4DX mixture. The above results suggest the energetic unstabilization, resulting in the volume expansion in the mixture. CP,mE shows the characteristic W-shaped concentration dependence, which has maximum at x ≈ 0.45 and two minima at x ≈ 0.1 and 0.9. The maximum CP,mE value for 3DX mixture shifts toward the positive side, compared to that of 4DX mixture. κTE were estimated from speeds of sound, densities, thermal expansion coefficients and isobaric heat capacities of the pure component liquids and the mixtures. The κTE result shows the positive concentration dependence over the whole composition range. The 3DX mixture has the similar thermodynamic properties to the 4DX mixture, despite that 4DX is the nonpolar solvent and 3DX is the dipolar liquid. this means that there exists the local dipolar interaction between 4DX molecules, and the prevalence of “microheterogeneity” in the both mixtures.  相似文献   

17.
The contributions into the total energy of intermolecular interactions in oxyethylated ethylene glycol derivatives were estimated in terms of a model approach that uses inner pressure as a measure of nonspecific interactions in a liquid. Increased number of ether groups in ethylene glycols increases the nonspecific contribution and decreases specific contributions. Unlike diethylene glycol, triethylene glycol and tetraethylene glycol contain H-bond networks in the range 298.15–308.15 K. The enthalpies of mixing of tertiary amides with tetraethylene glycol were measured and compared with those for ethylene glycol, diethylene glycol, and triethylene glycol. The effect of the structural and thermodynamic properties of the components on the integral and differential thermochemical characteristics of mixtures of glycols with N,N-disubstituted amides was discussed.  相似文献   

18.
Densities and speeds of sound for binary mixtures of diethylene glycol monomethyl ether and triethylene glycol monomethyl ether with 3-methyl-1-butanol and 2-methyl-2-butanol were measured at 288.15, 298.15 and 308.15 K, over the entire range of compositions at atmospheric pressure, using an Anton Paar DSA 5000 density meter. The experimental densities and speeds of sound have been used to calculate excess molar volumes and excess molar isentropic compressibilities. The speed of sound data are compared with theoretical speeds of sound calculated using several approaches.  相似文献   

19.
Viscosities of the ternary mixtures containing 2-methoxyethanol (ME) or 2-ethoxyethanol (EE), sulfolane (SULF) and ethylene glycols [ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG) and tetraethylene glycol (TETRAEG)] have been measured, at T?=?303.15?K and atmospheric pressure, over the whole composition range. From these experimental data, the deviations in viscosities (Δη 123) were calculated. These quantities were fitted to the Cibulka polynomial equation to derive the ternary adjustable parameters and standard errors. The results are discussed on the basis of intermolecular interactions between the components of the analysed mixtures.  相似文献   

20.
《Fluid Phase Equilibria》1999,164(2):225-255
An apparatus for a rapid and simultaneous determination of the thermophysical properties excess enthalpy, isobaric heat capacity, kinematic viscosity, density and thermal conductivity has been developed. The experimental setup is subject of this paper. At 298.15 and 323.15 K, the systems ethylene glycol dimethyl ether–n-dodecane, diethylene glycol dimethyl ether–n-dodecane, triethylene glycol dimethyl ether–n-dodecane, tetraethylene glycol dimethyl ether–n-dodecane and diethylene glycol dibutyl ether–n-dodecane have been investigated. The experimental results are correlated and the macroscopic properties are interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号