首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Millimeter-wave emission from the rippled-field magnetron (cross-field free electron laser (FEL)) is investigated experimentally and theoretically. In this device, electrons move in quasi-circular orbits under the combined action of a radial electric field, a uniform axial magnetic field, and a radial azimuthally periodic wiggler magnetic field. In excess of 300 kW of RF power is observed in two narrow spectral lines whose frequency can be tuned continuously from ~25 to ~50 GHz by variation of the axial magnetic field. The observations are interpreted as a FEL type of instability, associated with a resonance in the particle motion of a layer of electrons embedded in the dense spacecharge cloud. The resonance is shown to occur when 2kw?0 ? (?>0/?0) ?1 -(?p/?0)2, where kw is the wiggler wavenumber, ?0 is the azimuthal electron velocity, ?0 is the relativistic cyclotron frequency in the axial magnetic field, wp is the relativistic plasma frequency, and ?0 = [1 - (?0/c)2]-1/2 of the resonant electron layer.  相似文献   

2.
We present results where highly supersonic plasma jets and accelerated plasma fragments are generated by interaction of an intense picosecond laser pulse with a metallic target (Al, Cu, W, and Ta) in gas atmosphere. The formation of jets and well-localized massive plasma fragments occurs when a strong forward shock from a main laser pulse and a reverse shock from a pre-pulse meet to. Interferometric and shadow graphic measurements with high temporal (100 ps) and spatial (1 μm) resolution yield information about the formation and evolution of plasma jets and plasma fragments. The excitation of the electric and self-generated magnetic field by ponderomotive force during propagation of the laser pulse in a gas atmosphere was investigated as well. It had been shown previously that under certain conditions a hollow current channel can be generated in laser-produced plasma. The azimuthal magnetic field in such a micro-channel was determined by Faraday rotation of a probing laser beam to be 7.6 MGauss (MG). Ion acceleration in a pinched annular current channel up to 8 MeV analogous to micro-“plasma focus” conditions, may be realized at lengths of 100 μm. Self-generated magnetic fields of 4-7 MG have also been measured in thin skin layers in front of shock waves, where well-collimated plasma blocks were separated and accelerated away from the plasma body. The velocity of dense plasma blocks reaches values of order of 3 × 108 cm/s and they are stable during acceleration and propagation in gas.  相似文献   

3.
We consider the problem on the formation of suprathermal particle fluxes by electrostatic structures in strongly turbulent cosmic plasmas. It is shown that regions with a strong plasma turbulence can be large accelerators of charged particles. We give solutions of the stationary kinetic equation in a turbulent layer for different acceleration regimes and estimate the efficiency of diffusion over the longitudinal and transverse velocities of particles with respect to the magnetic field. The transverse diffusion in velocity space is more efficient for ions and leads to strong isotropization of ion fluxes. Electrons move almost along the magnetic field. We reveal the conditions under which the regular force in a nonuniform magnetic field influences the stochastic-acceleration process. The average energy of axial motion of the particles and the particle fluxes at large distances from the injection region are estimated. Ions and electrons can be accelerated up to comparable energies. We analyze the characteristic features of the motion of the relativistic-particle beams. It is shown that strong plasma turbulence can form particle beams with specific energies. The proposed mechanism is useful for explanation of the properties of energetic particles in cosmic plasmas with magnetic-field-aligned currents, e.g., in high-latitude regions of planetary magnetospheres, force-free configurations of the solar corona, and the solar wind.  相似文献   

4.
本文应用巨脉冲红宝石激光为光源的Mach-Zehnder干涉仪,研究了23kJ(千焦耳)“θ收缩”(θ-pinch)等离子体的电子密度、形状和不稳定性。从轴向干涉图的照片获得45至120mTorr(毫乇)氘气压范围的二维电子密度分布和电子密度的峰值在6×1016—2.3×1017cm-3范围。等离子体最大收缩出现在主压缩磁场的第一个半周期的1/3附近,在等离子体的最大收缩附近的特征约束时间(粒子数衰减1/e的时间)为1.8—4.3μs,具有负偏磁场的干涉图显示在等离子体中捕获了偏磁场。从这些干涉图的照片上还看到等离子体在主压缩磁场和等离子体捕获场之间作径向磁流体振荡。干涉图照片还表明,在45至80mTorr氘气压范围内,等离子体在主压缩磁场的第一个半周期内基本上都是稳定的。  相似文献   

5.
Laser ablation technology is used to isolate magnetic material to generate a local magnetic field effect. The impact of an induced magnetic field is enhanced by using the external magnetic field and can be widely employed to collect magnetic particles and position biomolecular in the bio-examination field. In addition, the magnetic field is affected and induced by the thermal stress produced after energy is exerted on the materials. Therefore, this study presents the phase of induced magnetic field (PIMF) of ferromagnetic film (Ni—1-μm thick) isolated using a 355-nm pulsed ultraviolet laser. In the experiment, three patterns comprising the following shapes and various isolated angle were designed for testing: hexagon (type I, 120°), L shape (type II, 90°), and cross shape (type III, 90°). The magnetic force microscopy image showed that when the isolating angle decreased, the PIMF increased, the value of which at the periphery of the corner of the type I and II patterns was ?3.96° and ?4.09°, respectively. In addition, by increasing the ablation time and residual thermal stress remaining in the material to increase the impact of the material’s properties when laser scanning speed was reduced from 1,000 to 500 mm/s, the PIMF value increased from ?4.09° to ?5.82°. The PIMF value of the type III pattern increased to ?9.87° because the residual thermal stress was twice that of the type II pattern. In the future, the experimental results can be used as a helpful reference for controlling magnetic particles in biomedical chips.  相似文献   

6.
The viscous forces on electrons and ions in a differentially rotating plasma drive an azimuthal current density j?, with axial magnetic field Bz which is shown to be proportional to plasma vorticity. Field strengths in agreement with those observed for both stars and galaxies are obtained, assuming that reactive forces prevent radial drifts of electrons or ions. Hierarchical vorticity is required in order to reconcile the small-scale length required for field changes with the large-scale length of observed fields. A vortex tube with magnetic field (magnetic vortex tube-MVT) becomes the basic entity for the origin of magnetic fields. Twisting of field lines by differential rotation causes (1?,Bz,) ?(jz, B?,). When jzB?, > j?, Bz the MVT suffers magnetic pinch, and the axial current in the pinch flows through a cylindrical sheath with a radial electric field due to plasma polarization. An instability of drift velocity denudes a length R of the current channel of free charges, and the inductively maintained current then requires a displacement current in R and hence a growing axial electric field Ez, Ez is limited by transfer of the energy in B?, to Ez, and thereafter the energy oscillates between the fields. On the stellar scale, evidence for polar MVT's comes from young stars with bipolar outflows of gas and jets. It is argued that end-on viewing of polar MVT's accounts for the kilogauss fields of Ap stars and the 1-100-MG fields of magnetic white dwarfs.  相似文献   

7.
Electron-positron pair creation in a standing wave is explored using a parameter-free quantum kinetic equation. Field strengths and frequencies corresponding to modern optical lasers induce a material polarization of the QED vacuum, which may be characterized as a plasma of e+e- quasiparticle pairs with a density of approximately 10(20) cm-3. The plasma vanishes almost completely when the laser field is zero, leaving a very small residual pair density n(r) which is the true manifestation of vacuum decay. The average pair density per period is proportional to the laser intensity but independent of the frequency nu. The density of residual pairs also grows with laser intensity but n(r) proportional to nu(2). With optical lasers at the forefront of the current generation, these dynamical QED vacuum effects can plausibly generate 5-10 observable two-photon annihilation events per laser pulse.  相似文献   

8.
表面效应对γ-Fe2O3微粉饱和磁化强度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
我们制备了直径为80—700A的γ-Fe2O3微粉,测量了它的比饱和磁化强度σs和比表面积Sa,得出经验公式:σs(s=σs(∞)(1—aSa)。假定微粉由两部分组成:第一部分是表面层,在磁场的作用下,它的磁矩只能转到与磁场成某个角度;第二部分是内部,它的磁矩可以转到磁场的方向。从这个简单的模型出发,上述的经验公式可以得到较好的解释。 关键词:  相似文献   

9.
原晓霞  仲佳勇 《物理学报》2017,66(7):75202-075202
利用商用磁流体力学模拟程序USIM对双等离子体团相互作用过程进行了数值模拟,分别考察和比较了双对流等离子体团在外加磁场和无外加磁场情况下,相互作用的物理过程.发现在外加磁场情况下等离子体团相互作用会伴随着磁重联(反向磁场)、磁排斥(同向磁场)以及一些不稳定过程.针对激光产生等离子体团错位相互作用实验,进行了标度模拟,发现外加磁场起着重要作用,进一步表明激光等离子体的磁化特征.研究结果为下一步在神光Ⅱ激光装置进行强磁环境下等离子体实验提供理论指导.  相似文献   

10.
为了增强等离子体激励器的扰动能力、提升等离子体气动激励的控制效果,采用高压探针、烟流显示和PIV流场测试等多种研究手段,开展了磁场加速等离子体激励器特性研究,获得了激励器不同时刻的放电图像,分析了磁场强度对激励器电学特性与诱导流场特性的影响规律.结果表明,(1)放电等离子体的定向运动速度与磁场强度成正比,磁加速等离子体的最大移动速度达到了6 m/s;(2)通过对不同剖面的诱导流场进行研究发现,磁场加速等离子体激励器能够在近壁区产生一系列涡结构.此外,该诱导流场具有显著的三维特征与非定常特性.研究结果为开展基于磁加速等离子体气动激励的流动控制奠定了基础.   相似文献   

11.
Analytical expressions for the magnetization and the longitudinal conductivity of nanowires are derived in a magnetic field, B. We show that the interplay between size and magnetic field energy-level quantizations manifests itself through novel magnetic quantum oscillations in metallic nanowires. There are three characteristic frequencies of de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) oscillations, F = F(0)/(1 + gamma)(3/2), and F(+/-) = 2F(0)/|1 + gamma +/- (1 + gamma)(1/2)|, in contrast with a single frequency F(0) = S(F)plankc/(2pie) in simple bulk metals. The amplitude of oscillations is strongly enhanced in some magic magnetic fields. The wire cross-section area S can be measured using the oscillations as S = 4pi(2)S(F)plank(2)c(2)/(gammae(2)B(2)) along with the Fermi-surface cross-section area, S(F).  相似文献   

12.
Using 586 pb(-1) of e+ e- collision data at E(c.m.) = 4170 MeV, produced at the Cornell Electron Storage Ring collider and collected with the CLEO-c detector, we observe the process e+ e- → π+ π- h(c)(1P). We measure its cross section to be 15.6±2.3±1.9±3.0 pb, where the third error is due to the external uncertainty on the branching fraction of ψ(2S) → π0 h(c)(1P), which we use for normalization. We also find evidence for e+ e- → ηh(c)(1P) at 4170 MeV at the 3σ level and see hints of a rise in the e+ e- → π+ π- h(c)(1P) cross section at 4260 MeV.  相似文献   

13.
The terahertz (THz) frequency radiation production as a result of nonlinear interaction of high intense laser beam with low density ripple in a magnetized plasma has been studied. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate then this difference frequency can be brought in the THz range. Self focusing (filamentation) of a circularly polarized beam propagating along the direction of static magnetic field in plasma is first investigated within extended‐paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre‐existing density ripple to produce a nonlinear current driving the THz radiation. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. The expressions for the laser beam width parameter, the electric field vector of the THz wave have been obtained. For typical laser beam and plasma parameters with the incident laser intensity ≈ 1014 W/cm2, laser beam radius (r0) = 50 μm, laser frequency (ω0) = 1.8848 × 1014rad/s, electron plasma (low density rippled) wave frequency (ω0) = 1.2848 × 1014 rad/s, plasma density (n0) = 5.025 × 1017cm–3, normalized ripple density amplitude (μ)=0.1, the produced THz emission can be at the level of Giga watt (GW) in power (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
With newly available compact laser technology [1] we are capable of producing 100?PW-class laser pulses with a single-cycle duration on the femtosecond timescale. With this fs intense laser we can produce a coherent X-ray pulse that is also compressed, well into the hard X-ray regime (~10?keV) and with a power up to as much as 10 Exawatts. We suggest utilizing these coherent X-rays to drive the acceleration of particles. Such X-rays are focusable far beyond the diffraction limit of the original laser wavelength and when injected into a crystal it forms a metallic-density electron plasma ideally suited for laser wakefield acceleration. If the X-ray field is limited by the Schwinger field at the focal size of ~100?nm, the achievable energy is 1?PeV over 50?m. (If the X-rays are focused further, much higher energies beyond this are possible). These processes are not limited to only electron acceleration, and if ions are pre-accelerated to beyond GeV they are capable of being further accelerated using a LWFA scheme [2] to similar energies as electrons over the same distance-scales. Such high energy proton (and ion) beams can induce copious neutrons, which can also give rise to intense compact muon beams and neutrino beams that may be portable. High-energy gamma rays can also be efficiently emitted with a bril- liance many orders of magnitude above the brightest X-ray sources by this accelerating process, from both the betatron radiation as well as the dominant radiative-damping dynamics. With the exceptional conditions enabled by this technology we envision a whole scope of new physical phenomena, including: the possibility of laser self-focus in the vacuum, neutron manipulation by the beat of such lasers, zeptosecond spectroscopy of nuclei, etc. Further, we now introduce along with the idea of vacuum as a nonlinear medium, the Schwinger Fiber Accelerator. This is a self-organized vacuum fiber acceleration concept, in which the repeated process of self-focusing and defocusing for the X-ray pulse in vacuum forms a modulated fiber that guides the intense X-rays.  相似文献   

15.
We discuss the contributions of the top-Higgs ht^0 proedicted by topcolor-assisted technicolor (TC2) models to the process e^ e^-→vvtt.We find that the contributions are very large.For mht=400 GeV and ε=0.01,the production cross section of this process can reach 11.2fb,which may be detected in the future high energy e^ e^- collider experiments.The process e^ e^-→vvtt can be used to test experimentally the signal of TC2 models.  相似文献   

16.
In this paper, the trajectory and kinetic energy of a charged particle, subjected to interaction from a laser beam containing an additionally applied external static axial magnetic field, have been analyzed. We give the rigorous analytical solutions of the dynamic equations. The obtained analytical solutions have been verified by performing calculations using the derived solutions and the well known Runge-Kutta procedure for solving original dynamic equations. Both methods gave the same results. The simulation results have been obtained and presented in graphical form using the derived solutions. Apart from the laser beam, we show the results for a maser beam. The obtained analytical solutions enabled us to perform a quantitative illustration, in a graphical form of the impact of many parameters on the shape, dimensions and the motion direction along a trajectory. The kinetic energy of electrons has also been studied and the energy oscillations in time with a period equal to the one of a particle rotation have been found. We show the appearance of, so-called, stationary trajectories (hypocycloid or epicycloid) which are the projections of the real trajectory onto the (x, y) plane. Increase in laser or maser beam intensity results in the increase in particle’s trajectory dimension which was found to be proportional to the amplitude of the electric field of the electromagnetic wave. However, external magnetic field increases the results in shrinking of the trajectories. Performed studies show that not only amplitude of the electric field but also the static axial magnetic field plays a crucial role in the acceleration process of a charged particle. At the authors of this paper best knowledge, the precise analytical solutions and theoretical analysis of the trajectories and energy gains by the charged particles accelerated in the laser beam and magnetic field are lacking in up to date publications. The authors have an intention to clarify partly some important aspects connected with this process. The presented theoretical studies apply for arbitrary charged particle and the attached figures-for electrons only.  相似文献   

17.
应用多光子非线性Compton散射模型,研究了多光子非线性Compton散射对激光等离子体中电子运动的影响,提出了将入射激光和Compton散射光形成的耦合光、耦合光与等离子体产生的自生磁场形成的混合场作为加速电子的新机制,对电子动量和能量方程进行了修正和数值模拟。结果表明,当混合场的电场振幅与磁场振幅相等时,回旋共振电子在与混合场作用时间内能被加速到很高的能量;电子加速能量随耦合光幅值的增大而增大,随电子耦合初始角度的增大而周期变小,随电子横向耦合归一化初始速度的增大,开始时较快增加,之后缓慢增加,最后趋于稳定。  相似文献   

18.
The formation of dusty plasma structures has been experimentally investigated in a cylindrical dc discharge in axial magnetic fields up to 2500 G. The rotation of the dusty plasma structures about the discharge symmetry axis with a frequency depending on the magnetic field has been observed. When the field increases to 700 G, the displacement of dust particles from the axial region of the discharge to the periphery, along with the continuation of the rotation, has been observed. The kinetic temperatures of the dust particles, the diffusion coefficients, and the effective nonideality parameter have been determined for various magnetic fields. The explanation of the features in the behavior of the dust particles in the discharge in the magnetic field has been proposed on the basis of the analysis of ambipolar diffusion in the magnetized plasma. The maximum magnetic field at which the levitation of the dust particles in the discharge is possible has been estimated.  相似文献   

19.
Using a 21 / 2-dimensional particle-in-cell (PIC) code to simulate the relativistic expansion of a magnetized collisionless plasma into a vacuum, we report a new mechanism in which the magnetic energy is efficiently converted into the directed kinetic energy of a small fraction of surface particles. We study this mechanism for both electron-positron and electron-ion (m(i)/m(e)=100, m(e) is the electron rest mass) plasmas. For the electron-positron case, the pairs can be accelerated to ultrarelativistic energies. For electron-ion plasmas, most of the energy gain goes to the ions.  相似文献   

20.
超短超强激光因其极端的物理参数范围以及可用于研究相对论等离子体等特征,成为当前激光驱动磁重联物理的研究热点.通常采用两路激光与平面靶相互作用实现激光驱动磁重联,然而在实验诊断中,由于激光等离子体自身的复杂性导致很难辨别磁重联的物理特征.本文对两路短脉冲激光驱动平面靶磁重联进行了数值模拟,重点分析了靶后电势分布特征和磁重联之间的关系.模拟结果显示,靶后电势分布可以直接影响被加速离子在探测面上的空间分布,因此可用来直接诊断短脉冲激光驱动磁重联实验.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号