首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The low-energy rate coefficients of capture of two identical dipolar polarizable rigid rotors in their lowest nonresonant (j(1) = 0 and j(2) = 0) and resonant (j(1) = 0, 1 and j(2) = 1, 0) states are calculated accurately within the close-coupling (CC) approach. The convergence of the quantum rate coefficients to their quantum-classical counterparts is studied. A comparison of the present accurate numerical with approximate analytical results (Nikitin, E. E.; Troe, J. J. Phys. Chem. A 2010, 114, 9762) indicates a good performance of the previous approach which was based on the interpolation between s-wave fly wheel quantal and all-wave classical adiabatic channel limits. The results obtained apply as well to the formation of transient molecular species in the encounter of two atoms at very low collision energy interacting via resonance dipole-dipole interaction.  相似文献   

3.
4.
Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.  相似文献   

5.
自由基CN、CH、H在燃烧化学、大气化学、天体发光、环境污染等方面占有极为重要的地位,对于这些自由基发光及形成动力学机理的探讨,无疑是重要的.近年来,人们利用亚稳态惰性原子与膨化物碰撞传能,探讨了CN(AB-+X)的化学发光[‘一、发现亚稳态的Ar(‘几,。)原子与H  相似文献   

6.
The absolute integral cross sections for the formation of HeH+ and HeD+ from the collisions of HD+(v,j=1)+He have been examined over a broad range of vibrational energy levels v=0-13 at the center-of-mass collision energies (ET) of 0.6 and 1.4 eV using the vacuum ultraviolet (VUV) pulsed field ionization photoelectron secondary ion coincidence method. The ET dependencies of the integral cross sections for products HeH+ and HeD+ from HD+(v=0-4)+He collisions in the ET range of 0-3 eV have also been measured using the VUV photoionization guided ion beam mass spectrometric technique, in which vibrationally selected HD+(v) reactant ions were prepared via excitation of selected autoionization resonances of HD. At low total energies, a pronounced isotope effect is observed in absolute integral cross sections for the HeH++D and HeD++H channels with significant favoring of the deuteron transfer channel. As v is increased in the range of v=0-9, the integral cross sections of the HeH++D channel are found to approach those of HeD++H. The observed velocity distributions of products HeD+ and HeH+ are consistent with an impulsive or spectator-stripping mechanism. Detailed quasiclassical trajectory (QCT) calculations are also presented for HD+(v,j=1)+He collisions at the same energies of the experiment. The QCT calculations were performed on the most accurate ab initio potential energy surface available. If the zero-point energy of the reaction products is taken into account, the QCT cross sections for products HeH+ and HeD+ from HD+(v)+He are found to be significantly lower than the experimental results at ET values near the reaction thresholds. The agreement between the experimental and QCT cross sections improves with translational energy. Except for prethreshold reactivity, QCT calculations ignoring the zero-point energy in the products are generally in good agreement with experimental absolute cross sections. The experimental HeH+/HeD+ branching ratios for the HD+(v=0-9)+He collisions are generally consistent with QCT predictions. The observed isotope effects can be rationalized on the basis of differences in thermochemical thresholds and angular momentum conservation constraints.  相似文献   

7.
The relative photolysis rates of HCHO and HCDO have been studied in May 2004 at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. The photolytic loss of HCDO was measured relative to HCHO by long path FT-IR and DOAS detection during the course of the experiment. The isotopic composition of the reaction product H(2) was determined by isotope ratio mass spectrometry (IRMS) on air samples taken during the photolysis experiments. The relative photolysis rate obtained by FTIR is j(HCHO)/j(HCDO) = 1.58 +/- 0.03. The ratios of the photolysis rates for the molecular and the radical channels obtained from the IRMS data, in combination with the quantum yield of the molecular channel in the photolysis of HCHO, Phi(HCHO-->H(2)+CO) (JPL Publication 06-2), are j(HCHO-->H(2)+CO/jHCDO-->HD+CO) = 1.82 +/- 0.07 and j(HCHO-->H+HCO/(jHCDO-->H+DCO + jHCDO-->D+HCO)) = 1.10 +/- 0.06. The atmospheric implications of the large isotope effect in the relative rate of photolysis and quantum yield of the formaldehyde isotopologues are discussed in relation to the global hydrogen budget.  相似文献   

8.
We report a dynamics study of the reaction N((2)D) + H(2) (v=0, j=0-5) --> NH + H using the time-dependent quantum wave packet method and a recently reported single-sheeted double many-body expansion potential energy surface for NH(2)(1(2)A' ') which has been modeled from accurate ab initio multireference configuration-interaction calculations. The calculated probabilities for (v=0, j=0-5) are shown to display resonance structures, a feature also visible to some extent in the calculated total cross sections for (v=0, j=0). A comparison between the calculated centrifugal-sudden and coupled-channel reaction probabilities validate the former approximation for the title system. Rate constants calculated using a uniform J-shifting scheme and averaged over a Boltzmann distribution of rotational states are shown to be in good agreement with the available experimental values. Comparisons with other theoretical results are also made.  相似文献   

9.
A global analytical potential energy surface for the ground state of H(3)(-) has been constructed by fitting an analytic function to the ab initio potential energy values computed using coupled cluster singles and doubles with perturbative triples [CCSD(T)] method and Dunning's augmented correlation consistent polarized valence triple zeta basis set. Using this potential energy surface, time-dependent quantum mechanical wave packet calculations were carried out to calculate the reaction probabilities (P(R)) for the exchange reaction H(-)+H(2)(v, j)-->H(2)+H(-), for different initial vibrational (v) and rotational (j) states of H(2), for total angular momentum equal to zero. With increase in v, the number of oscillations in the P(R)(E) plot increases and the oscillations become more pronounced. While P(R) increases with increase in rotational excitation from j=0 to 1, it decreases with further increase in j to 2 over a wide range of energies. In addition, rotational excitation quenches the oscillations in P(R)(E) plots.  相似文献   

10.
The thermal dissociation of formaldehyde proceeds on three channels, the molecular-elimination channel H2CO --> H2 + CO (1), the radical-forming bond-fission channel H2CO --> H + HCO (2), and the bond-fission-initiated, intramolecular-hydrogen-abstraction channel H2CO --> H...HCO --> H2 + CO (3) which also forms molecular products. The kinetics of this system in the low-pressure range of the unimolecular reaction is shown to be governed by a subtle superposition of collisional channel coupling to be treated by solving a master equation, of rotational channel switching accessible through ab initio calculations of the potential as well as spectroscopic and photophysical determinations of the threshold energies and channel branching above the threshold energy for radical formation which can be characterized through formaldehyde photolysis quantum yields as well as classical trajectory calculations. On the basis of the available information, the rate coefficients for the formation of molecular and radical fragments are analyzed and extrapolated over wide ranges of conditions. The modeled rate coefficients in the low-pressure range of the reaction (neglecting tunneling) over the range 1400-3200 K in the bath-gas Ar in this way are represented by k0,Mol/[Ar] approximately 9.4 x 10(-9) exp(-33,140 K/T) cm3 molecule(-1) s(-1) and k0,Rad/[Ar] approximately 6.2 x 10(-9) exp(-36,980 K/T) cm3 molecule(-1) s(-1). The corresponding values for the bath-gas Kr, on which the analysis relies in particular, are k0,Mol/[Kr] approximately 7.7 x 10(-9) exp(-33,110 K/T) and k0,Rad/[Kr] approximately 4.1 x 10(-9) exp(-36 910 K/T) cm3 molecule(-1) s(-1). While the threshold energy E0,2 for channels 2 and 3 is taken from spectroscopic measurements, the threshold energy E0,1 for channel 1 is fitted on the basis of experimental ratios k0,Rad/k0,Mol in combination with photolysis quantum yields. The derived value of E0,1(1) = 81.2 (+/-0.9) kcal mol(-1) is in good agreement with results from recent ab initio calculations, 81.9 (+/-0.3) kcal mol(-1), but is higher than earlier results derived from photophysical experiments, 79.2 (+/-0.8) kcal mol(-1). Rate coefficients for the high-pressure limit of the reaction are also modeled. The results of the present work markedly depend on the branching ratio between channels 2 and 3. Expressions of this branching ratio from classical trajectory calculations and from photolysis quantum yield measurements were tested. At the same time, a modeling of the photolysis quantum yields was performed. The formaldehyde system so far presents the best characterized multichannel dissociation reaction. It may serve as a prototype for other multichannel dissociation reactions.  相似文献   

11.
A three-dimensional time-dependent quantum mechanical approach is used to calculate the reaction probability (P(R)) and the integral reaction cross section (sigma(R)) for both channels of the reaction He + HD+(v = 0, 1, 2, 3; j = 0) --> HeH(D)+ + D(H), over a range of translational energy (E(trans)) on two different ab initio potential energy surfaces (McLaughlin-Thompson-Joseph-Sathyamurthy and Palmieri et al.). The reaction probability plots as a function of translational energy exhibit several oscillations, which are characteristic of the system. The vibrational enhancement of the reaction probability and the integral reaction cross section values are reproduced qualitatively by our calculations, in accordance with the experimental results. The isotopic branching ratio for the reaction decreases in going from v = 0 to v = 1 and then becomes nearly v-independent in going from v = 1 to v =3 on both the surfaces.  相似文献   

12.
Full quantum state resolved scattering of the F atom reaction with H(2)(j=0) and H(2)(j=1) was investigated at the collision energies of 0.19 and 0.56 kcalmol. Dramatic difference between the dynamics for the F+H(2)(j=0,1) reactions at both collision energies have been observed. Forward scattering HF(v(')=2) products have been observed unambiguously for the F+H(2)(j=1) reaction at low collision energies, which was attributed to the Feshbach resonances. This study provides a unique case of reaction resonances involving a rotationally excited reagent.  相似文献   

13.
The thermal decomposition of the 2-chloroallyl radical, CH(2)CClCH(2) --> CH(2)CCH(2) + Cl (1), was studied using the laser photolysis/photoionization mass spectrometry technique. Rate constants were determined in time-resolved experiments as a function of temperature (720-840 K) and bath gas density ([He] = (3-12) x 10(16), [N(2)] = 6 x 10(16) molecule cm(-3)). C(3)H(4) was observed as a primary product of reaction 1. The rate constants of reaction 1 are in the falloff, close to the low-pressure limit, under the conditions of the experiments. The potential energy surface (PES) of reaction 1 was studied using a variety of quantum chemical methods. The results of the study indicate that the minimum energy path of the CH(2)CClCH(2) dissociation proceeds through a PES plateau corresponding to a weakly bound Cl-C(3)H(4) complex; a PES saddle point exists between the equilibrium CH(2)CClCH(2) structure and the Cl-C(3)H(4) complex. The results of quantum chemical calculations, the rate constant values obtained in the experimental study, and literature data on the reverse reaction of addition of Cl to allene were used to create a model of reactions 1 and -1. The experimental dependences of the rate constants on temperature and pressure were reproduced in RRKM/master equation calculations. The reaction model provides expressions for the temperature dependences of the high-pressure-limit and the low-pressure-limit rate constants and the falloff broadening factors (at T = 300-1600 K): k(infinity)(1) = 1.45 x 10(20)T(-1.75) exp(-19609 K/T) s(-1), k(infinity)(-)(1) = 8.94 x 10(-10)T(-0.40) exp(481 K/T) cm(3) molecule(-1) s(-1), k(1)(0)(He) = 5.01 x 10(-32)T(-12.02) exp(-22788 K/T) cm(3) molecule(-1) s(-1), k(1)(0)(N(2)) = 2.50 x 10(-32)T(-11.92) exp(-22756 K/T) cm(3) molecule(-1) s(-1), F(cent)(He) = 0.46 exp(-T/1001 K) + 0.54 exp(-T/996 K) + exp(-4008 K/T), and F(cent)(N(2)) = 0.37 exp(-T/2017 K) + 0.63 exp(-T/142 K) + exp(-4812 K/T). The experimental data are not sufficient to specify all the parameters of the model; consequently, some of the model parameters were obtained from quantum chemical calculations and from analogy with other reactions of radical decomposition. Thus, the parametrization is most reliable under conditions close to those used in the experiments.  相似文献   

14.
Two-laser, action spectroscopy experiments have been performed in the I(2)B-X, υ'-0 spectral region on H(2)···I(2) and D(2)···I(2) complexes to investigate the dependence of the H(2)/D(2) + I(2) intermolecular interactions on orientation. The spectra contain features associated with at least two different conformers of the ground-state H(2)/D(2)···I(2)(X,υ' = 0) complexes; one conformer has a preferred T-shaped geometry with the H(2)/D(2) moiety localized in a potential minimum that is orthogonal to the I-I bond axis, and the second conformer has a linear geometry with the H(2)/D(2) moiety positioned in minima at either end of the I(2) molecule, along the bond axis. Those features associated with complexes containing para-H(2)(j = 0), ortho-H(2)(j = 1), ortho-D(2)(j = 0), and para-D(2)(j = 1) are also assigned. The linear conformers are found to be more strongly bound than the T-shaped conformers with binding energies of 118.9(1.9) cm(-1) versus 91.3-93.3 cm(-1) for the ortho-H(2)···I(2) complexes and 144.2(2.1) cm(-1) versus 107.9 cm(-1) for the para-D(2)···I(2) complexes, respectively. Electronic structure calculations of the complexes containing ICl and I(2) with H(2), He, Ne, and Ar were performed to reveal the nature of the interactions and to shed insight into the origins of the different binding energies. The most stable minima in the H(2)/D(2) + I(2)(B,υ') excited-state potentials have T-shaped geometries. Calculated energies and probability amplitudes of the excited-state levels provide insight into the different excited-state intermolecular vibrational levels accessed by transitions of the two ground-state conformers.  相似文献   

15.
Clusters of tetracene molecules with different numbers of attached (Ar)(N), (Ne)(N) and (H(2))(N) particles (N = 1-2000) are assembled inside superfluid He nanodroplets and studied via laser-induced fluorescence. The frequency shift of the fluorescence spectrum of the tetracene molecules is studied as a function of cluster size and pickup order of tetracene and cluster species. For (Ar)(N) and (Ne)(N) clusters, our results indicate that the tetracene molecules reside inside the clusters when tetracene is captured by the He nanodroplet before the cluster species; conversely, the tetracene molecules stay on the surface of the clusters when tetracene is captured after the cluster species. In the case of (H(2))(N) clusters, however, tetracene molecules reside inside the (H(2))(N) clusters irrespective of the pickup order. We conclude that (Ar)(N) and (Ne)(N) clusters are rigid at T = 0.38 K, while (H(2))(N) clusters of up to N = 2000 remain fluxional at the same temperature. The results may also indicate the occurrence of heterogeneous nucleation of the (H(2))(N) clusters, which is induced by the interaction with tetracene chromophore molecules.  相似文献   

16.
A beam containing CH(4), Cl(2), and He is expanded into a vacuum chamber where CH(4) is prepared via infrared excitation in a combination band consisting of one quantum of excitation each in the bending and torsional modes (nu(2)+nu(4)). The reaction is initiated by fast Cl atoms generated by photolysis of Cl(2) at 355 nm, and the resulting CH(3) and HCl products are detected in a state-specific manner using resonance-enhanced multiphoton ionization (REMPI). By comparing the relative amplitudes of the action spectra of Cl+CH(4)(nu(2)+nu(4)) and Cl+CH(4)(nu(3)) reactions, we determine that the nu(2)+nu(4) mode-driven reaction is at least 15% as reactive as the nu(3) (antisymmetric stretch) mode-driven reaction. The REMPI spectrum of the CH(3) products shows no propensity toward the formation of umbrella bend mode excited methyl radical, CH(3)(nu(2)=1), which is in sharp distinction to the theoretical expectation based on adiabatic correlations between CH(4) and CH(3). The rotational distribution of HCl(v=1) products from the Cl+CH(4)(nu(2)+nu(4)) reaction is hotter than the corresponding distribution from the Cl+CH(4)(nu(3)) reaction, even though the total energies of the two reactions are the same within 4%. An explanation for this enhanced rotational excitation of the HCl product from the Cl+CH(4)(nu(2)+nu(4)) reaction is offered in terms of the projection of the bending motion of the CH(4) reagent onto the rotational motion of the HCl product. The angular distributions of the HCl(nu=0) products from the Cl+CH(4)(nu(2)+nu(4)) reaction are backward scattered, which is in qualitative agreement with theoretical calculation. Overall, nonadiabatic product vibrational correlation and mode specificity of the reaction indicate that either the bending mode or the torsional mode or both modes are strongly coupled to the reaction coordinate.  相似文献   

17.
This paper presents the methodology to generate beams of ions in single quantum states for bimolecular ion-molecule reaction dynamics studies using pulsed field ionization (PFI) of atoms or molecules in high-n Rydberg states produced by vacuum ultraviolet (VUV) synchrotron or laser photoexcitation. Employing the pseudocontinuum high-resolution VUV synchrotron radiation at the Advanced Light Source as the photoionization source, PFI photoions (PFI-PIs) in selected rovibrational states have been generated for ion-molecule reaction studies using a fast-ion gate to pass the PFI-PIs at a fixed delay with respect to the detection of the PFI photoelectrons (PFI-PEs). The fast ion gate provided by a novel interleaved comb wire gate lens is the key for achieving the optimal signal-to-noise ratio in state-selected ion-molecule collision studies using the VUV synchrotron based PFI-PE secondary ion coincidence (PFI-PESICO) method. The most recent development of the VUV laser PFI-PI scheme for state-selected ion-molecule collision studies is also described. Absolute integral cross sections for state-selected H2+ ions ranging from v+ = 0 to 17 in collisions with Ar, Ne, and He at controlled translational energies have been obtained by employing the VUV synchrotron based PFI-PESICO scheme. The comparison between PFI-PESICO cross sections for the H2+(HD+)+Ne and H2+(HD+)+He proton-transfer reactions and theoretical cross sections based on quasiclassical trajectory (QCT) calculations and three-dimensional quantum scattering calculations performed on the most recently available ab initio potential energy surfaces is highlighted. In both reaction systems, quantum scattering resonances enhance the integral cross sections significantly above QCT predictions at low translational and vibrational energies. At higher energies, the agreement between experiment and quasiclassical theory is very good. The profile and magnitude of the kinetic energy dependence of the absolute integral cross sections for the H2+(v+ = 0-2,N+ = 1)+He proton-transfer reaction unambiguously show that the inclusion of Coriolis coupling is important in quantum dynamics scattering calculations of ion-molecule collisions.  相似文献   

18.
Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data.  相似文献   

19.
We present accurate quantum calculations of state-to-state cross sections for the N + OH → NO + H reaction performed on the ground (3)A' global adiabatic potential energy surface of Guadagnini et al. [J. Chem. Phys. 102, 774 (1995)]. The OH reagent is initially considered in the rovibrational state ν = 0, j = 0 and wave packet calculations have been performed for selected total angular momentum, J = 0, 10, 20, 30, 40,...,120. Converged integral state-to-state cross sections are obtained up to a collision energy of 0.5 eV, considering a maximum number of eight helicity components, Ω = 0,...,7. Reaction probabilities for J = 0 obtained as a function of collision energy, using the wave packet method, are compared with the recently published time-independent quantum mechanical one. Total reaction cross sections, state-specific rate constants, opacity functions, and product state-resolved integral cross-sections have been obtained by means of the wave packet method for several collision energies and compared with recent quasi-classical trajectory results obtained with the same potential energy surface. The rate constant for OH(ν = 0, j = 0) is in good agreement with the previous theoretical values, but in disagreement with the experimental data, except at 300 K.  相似文献   

20.
The reactions between Ca(+)(4(2)S(1/2)) and O(3), O(2), N(2), CO(2) and H(2)O were studied using two techniques: the pulsed laser photo-dissociation at 193 nm of an organo-calcium vapour, followed by time-resolved laser-induced fluorescence spectroscopy of Ca(+) at 393.37 nm (Ca(+)(4(2)P(3/2)-4(2)S(1/2))); and the pulsed laser ablation at 532 nm of a calcite target in a fast flow tube, followed by mass spectrometric detection of Ca(+). The rate coefficient for the reaction with O(3) is essentially independent of temperature, k(189-312 K) = (3.9 +/- 1.2) x 10(-10) cm(3) molecule(-1) s(-1), and is about 35% of the Langevin capture frequency. One reason for this is that there is a lack of correlation between the reactant and product potential energy surfaces for near coplanar collisions. The recombination reactions of Ca(+) with O(2), CO(2) and H(2)O were found to be in the fall-off region over the experimental pressure range (1-80 Torr). The data were fitted by RRKM theory combined with quantum calculations on CaO(2)(+), Ca(+).CO(2) and Ca(+).H(2)O, yielding the following results with He as third body when extrapolated from 10(-3)-10(3) Torr and a temperature range of 100-1500 K. For Ca(+) + O(2): log(10)(k(rec,0)/cm(6) molecule(-2) s(-1)) = -26.16 - 1.113log(10)T- 0.056log(10)(2)T, k(rec,infinity) = 1.4 x 10(-10) cm(3) molecule(-1) s(-1), F(c) = 0.56. For Ca(+) + CO(2): log(10)(k(rec,0)/ cm(6) molecule(-2) s(-1)) = -27.94 + 2.204log(10)T- 1.124log(10)(2)T, k(rec,infinity) = 3.5 x 10(-11) cm(3) molecule(-1) s(-1), F(c) = 0.60. For Ca(+) + H(2)O: log(10)(k(rec,0)/ cm(6) molecule(-2) s(-1)) = -23.88 - 1.823log(10)T- 0.063log(10)(2)T, k(rec,infinity) = 7.3 x 10(-11)exp(830 J mol(-1)/RT) cm(3) molecule(-1) s(-1), F(c) = 0.50 (F(c) is the broadening factor). A classical trajectory analysis of the Ca(+) + CO(2) reaction is then used to investigate the small high pressure limiting rate coefficient, which is significantly below the Langevin capture frequency. Finally, the implications of these results for calcium chemistry in the mesosphere are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号