首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With photon correlation spectrometry (PCS) the diffusion coefficients, average diameters and polydispersities of colloidal particles can be determined in dilute aqueous suspensions. In this study PCS is used to follow the coagulation and flocculation of silica particles. Electrolyte solution added to suspensions of bare particles and of particles covered with adsorbed polyethylene oxide layers induces aggregation. The rate constants of aggregation are evaluated by the second-order Smoluchowski theory with the assumptions of spherical aggregated particles and volume proportional light-scattering amplitude. Adsorbed PEO layers of molar mass lower thanM w=160000 decrease the critical flocculation concentration and the flocculation states and rate constants for bare and covered particles are the same at high electrolyte concentrations. Polymer layers of high molar mass (M w=325000, 900000) reducved at full coverage the rate constants and stabilize the suspensions even at high electrolyte concentrations. At low coverage adsorption of high molar mass polymers results in the same values as of low molar mass PEO. The correlation between rate constants and hydrodynamic PEO layer thicknesses demonstrates the steric influence of the tails of the adsorbed macromolecules on stability and flocculation.Dedicated to Prof. Dr. Joachim Klein on the occasion of his 60th birthday  相似文献   

2.
The synthesis of novel amphiphilic star-graft (SG) copolymers containing hydrophilic poly(oxyethylene) (PEO) side chains attached to a hydrophobic backbone by multifunctional entity is reported. In a first step poly(phthalimidoacrylate-co-styrene) was converted into polymers containing different number of multifunctional branching cites distributed along the main chain by partial aminolysis of the phthalimidoacrylate units with tris(hydroxymethyl)aminomethane. In the second step, these reactive copolymers yielded SG copolymers with different number of star-shaped PEO side groups by reaction with isocyanato terminated methoxy–PEO. The copolymers were characterized by size-exclusion chromatography, IR-, and NMR-spectroscopy. Their thermal properties were examined by thermal gravimetric analysis and differential scanning calorimetry. The studies indicate that the grafting degree and hydrogen bonding determine to a great extent the behavior of the SG copolymers in solid state and in solution. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 673–679, 1997  相似文献   

3.
Summary  The cross-linkings of the surface polymer layer on mono disperse, poly(maleic anhydride-styrene)-modified silica particles by the reaction with diisocyanate were studied. The extent of cross-linking was estimated by the weight decrease by immersing the particles in the buffer solution of pH 2.0, 4.0 and 9.0 at a room temperature for 24 h. The reaction of the polymer-modified silica with 1,6-diisocyanatohexane afforded relatively stable composite particles which lost less than 5 wt% of the polymer in aqueous solution in the pH range 2.0–9.0. The diisocyanate was a preferable cross-linker to 2,4-diisocyanatotoluene in terms of stability in acidic or basic aqueous solution. The flexibility of the cross-linker molecule possibly plays an important role in the cross-linking reaction. The carboxyl and amino groups were formed by treating the cross-linked composite particles with diluted HCl solution; 5–6 and 0.5–1.1 μmol g-1, respectively. The cross-linked composite particles exhibited the characteristic property of ζ-potential, −44 to −47 mV and −102 to −107 mV in a neutral aqueous solution and ethanol, respectively. Received: 26 May 1997 Accepted: 4 August 1997  相似文献   

4.
 Novel poly(vinyl-methylether)-b-poly(vinyloxy-4-butyric acid) diblock copolymers were made for the purpose of colloidal stabilization of particles in liquids. The synthesis via cationic polymerization with HI/I2 initiation and the characterization of such novel diblock copolymers is described. A set of polymers was prepared including block copolymers with different block length ratios and the two separate homopolymers having the chemical composition of one of the blocks. Colloidal stabilization of α-Fe2O3 particles in water could be realized with all polymers except with the (vinylmethylether) homopolymer. One of the block copolymers was used for evaluation of the stabilizing abilities in organic solvents. Stable α-Fe2O3 dispersions could be prepared in solvents with very different polarities, ranging from methanol to toluene. In addition, it is shown that particles stabilized with these block copolymers can be easily transferred from water to an organic liquid. Received: 15 May 1997 Accepted: 13 October 1997  相似文献   

5.
Colloidal silica sols having a narrow dispersity, prepared by the ammonia-catalyzed hydrolysis of Si(OEt)4, were functionalized by reaction with vinyltrimethoxysilane (H2C?CHSi(OMe)3) or methacryloxypropyltri-methoxysilane (H2C?CMeCO2(CH2)3Si(OMe)3. The electrostatically stabilized colloids were stable in acetone and dimethylformamide. Radical polymerization of methyl methacrylate in the presence of either type of functionalized particle led to particles with surfacegrafted poly(methyl methacrylate) (PMMA). The efficiency of polymer grafting was shown to be related to the nature of the functional groups. The PMMA-modified, sterically stabilized particles were colloidally stable in solvents ranging from acetone to toluene but unstable in water or hexane. The vinyl functionalized silica was alternatively reacted with HSiMe2-terminated silicones in a platinum-catalyzed hydrosilylation. The resultant sterically stabilized particles were stable in hexane. It was thus possible to convert the unmodified silica to organo-functionalized silica and finally to polymer-grafted silica while maintaining colloidal stability. During the course of these modifications, the mechanism for colloidal stability changed from electrostatic to steric stabilization.  相似文献   

6.
Macromolecular design by interchange of xanthates/reversible addition fragmentation chain transfer polymerization (MADIX/RAFT) of diallyldimethylammonium chloride (DADMAC) using the hydrophobic O‐ethyl‐S‐(1‐methoxycarbonyl) ethyl dithiocarbonate MADIX/RAFT mediating agent, Rhodixan A1, was investigated. Attempts to obtain an efficient control of DADMAC polymerization in a water/ethanol mixture failed because of significant chain transfer to ethanol. The use of a water‐soluble Rhodixan A1‐terminated acrylamide oligomer as the MADIX/RAFT agent enabled the controlled polymerization of DADMAC in water at 50 °C using the cationic azo initiator V‐50. An excellent agreement was found between experimental and theoretical Mn values throughout polymerization and over a broad range of initial concentration of xanthate. Polydispersity indexes (PDIs) at the end of the polymerization were abnormally high for a process showing a linear increase of Mn with monomer conversion (1.8 < PDI < 2.0). This feature was explained by the measurement of a high transfer constant to xanthate (Cx = 18.8 ± 1.6) but a low interchange transfer constant (Cex = 1.5). Nevertheless, poly(acrylamide)–poly(DADMAC) double hydrophilic block copolymers (DHBCs) of controlled Mn and composition could be successfully synthesized for the first time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
The thermal stability of poly(methyl methacrylate) (PMMA) photopolymerised using colloidal cadmium sulphide as the photoinitiator was studied by thermogravimetry (TG) and differential TG (DTG).The thermal stability of the CdS initiated PMMA was greater than that of conventional radically polymerised PMMA and approached that of anionically prepared PMMA. The DTG curve of the CdS initiated PMMA was a composite of four peaks, three of which correspond to the three peaks observed in the DTG curve of standard radically prepared PMMA. It is suggested that the additional peak arises from a new mode of depolymerisation initiation, that is, from chain end unsaturation introduced into the polymer chain during polymerisation initiation with the colloidal CdS.  相似文献   

8.
The complexation of three kinds of sequence-ordered acid (co)polymers with a base homopolymer was studied. The acid polymers used are poly(methacrylic acid) 1 , alternating (1:1) ethylene-methacrylic acid copolymer 2 , and periodic (2:1) ethylene-methacrylic acid copolymer 3 , and the base polymer is poly(4-vinylpyridine) 4. When mixing a methanol solution of 1, 2 , or 3 with that of 4 (0.1 M of each functional group), precipitate was formed immediately for all polymer pairs. All the precipitates contained carboxyl and pyridyl groups in ca. 1:1 molar ratio and showed IR spectra indicating the hydrogen bonding between carboxyl and pyridyl groups. When mixing dilute methanol solutions (10−4M) of the above polymer pairs, no precipitation was observed, but the extinction coefficient (ϵB) at 255 nm of pyridyl groups in 4 was found to increase with an increasing acid polymer concentration. This is ascribed to hydrogen bonding between carboxyl and pyridyl groups in methanol. Based on the ϵB variation, the order of complexation constants for acid/base polymer pairs was estimated as follows: 1/4 pair ∼ 2/4 pair ≫ 3/4 pair. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Poly(ethylene glycol) (PEG) is often used to biocompatibilize surfaces of implantable biomedical devices. Here, block copolymers consisting of PEG and l ‐cysteine‐containing poly(amino acid)s (PAA's) were synthesized as polymeric multianchor systems for the covalent attachment to gold surfaces or surfaces decorated with gold nanoparticles. Amino‐terminated PEG was used as macroinitiator in the ring‐opening polymerization, (ROP), of respective amino acid N‐carboxyanhydrides (NCA's) of l ‐cysteine (l ‐Cys), l ‐glutamate (l ‐Glu), and l ‐lysine (l ‐Lys). The resulting block copolymers formed either diblock copolymers, PEG‐b‐p(l ‐Gluxcol ‐Cysy) or triblock copolymers, PEG‐b‐p(l ‐Glu)xb‐p(l ‐Cys)y. The monomer feed ratio matches the actual copolymer composition, which, together with high yields and a low polydispersity, indicates that the NCA ROP follows a living mechanism. The l ‐Cys repeat units act as anchors to the gold surface or the gold nanoparticles and the l ‐Glu repeat units act as spacers for the reactive l ‐Cys units. Surface analysis by atomic force microscopy revealed that all block copolymers formed homogenous and pin‐hole free surface coatings and the phase separation of mutually immiscible PEG and PAA blocks was observed. A different concept for the biocompatibilization of surfaces was followed when thiol‐terminated p(l ‐Lys) homopolymer was first grafted to the surface and then covalently decorated with HOOC‐CH2‐PEG‐b‐p(Bz‐l ‐Glu) polymeric micelles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 248–257  相似文献   

10.
The thermal stabilities of various poly(alkyl methacrylate) homopolymers and poly(methyl methacrylate-g-dimethyl siloxane) (PMMA-g-PSX) graft copolymers have been determined by thermogravimetric analysis (TGA). As expected, the thermal stabilities of poly(alkyl methacrylates) were a function of the ester alkyl group, and polymerization mechanism. In particular, thermally labile linkages, which result from termination during free radical or nonliving polymerization mechanisms, decrease the ultimate thermal stabilities of the polymers. However, graft copolymers, which were prepared by the macromonomer technique with free radical initiators, exhibited enhanced thermal stability compared to homopolymer controls. A more complex free radical polymerization mechanism for the macromonomer modified polymerization may account for this result. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
A methodology for the synthesis of well‐defined poly(ethylene oxide)‐block‐poly(vinyl alcohol) (PEO‐b‐PVA) and PVA‐b‐PEO‐b‐PVA polymers was reported. Novel xanthate end‐functionalized PEOs were synthesized by a series of end‐group transformations. They were then used to mediate the reversible addition–fragmentation chain transfer polymerization of vinyl acetate to obtain well‐defined poly(ethylene oxide)‐b‐poly(vinyl acetate) (PEO‐b‐PVAc) and PVAc‐b‐PEO‐b‐PVAc. When these block copolymers were directly hydrolyzed in methanol solution of sodium hydroxide, polymers with brown color were obtained, which was due to the formation of conjugated unsaturated aldehyde structures. To circumvent these side reactions, the xanthate groups were removed by adding a primary amine before hydrolysis and the products thus obtained were white powders. The polymers were characterized by gel permeation chromatography, 1H NMR spectroscopy and FT‐IR. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1901–1910, 2009  相似文献   

12.
 The adsorption of poly-ethylene oxide (PEO) on modified colloidal silica and the stability of the aqueous suspension was investigated. With octanol some silanol groups at the silica surface were replaced by octylgroups. The size of the modified silica particles and the charge and chemical groups on the surface were charaterized by ultracentrifugation, photon correlation spectrometry, polyelectrolyte titration and IR spectrometry. The adsorbed amounts of polyethylene oxides of different molar mass were determined on the modified silica in water. With photon correlation spectrometry (PCS) the hydrodynamic layer thickness of the PEO layers on the particles were measured. The dependences of the layer thicknesses on molar mass of the PEO, polymer concentration and adsorption time were determined. The aggregation of the suspended PEO coated and uncoated modified silica particles was examined with PCS by the time dependence of the diffusion coefficient at different salt concentrations. The influence of molar mass and concentration of PEO as well as of the age of the dispersion was explored. The measured dependences are discussed and compared with the behavior of unmodified silica- and latex-particles. Received: 6 April 1998 Accepted: 27 May 1998  相似文献   

13.
The sedimentation kinetics of an ochre suspension in salt (NaCl)-containing aqueous media was studied in the presence of ionogenic (anionic, A, and cationic, C) acrylamide copolymers with high molecular weight (M > 2 × 106) using a VT–0.5 torsion balance. The ionic strength of the dispersion medium varied in the wide range from 0.001 N to 0.4 N. The flocculation proceeded predominantly by a `bridge' mechanism, and the fraction of macromolecules inactive in the acts of floccule formation was significantly higher for C copolymer as compared with A copolymer. A drastic fall in the flocculating activities of A and C copolymers when passing from salt-free to salt-containing media is caused mainly by two following events: 1. The change in the conformational state of macromolecules, primarily, in their effective dimensions 2. The participation of a certain part of electrolyte in the formation and modification of an electrical double layer around disperse phase particles After introducing binary compositions of A and C flocculants into salt-containing media their resultant flocculating effect depends on the introduction mode of polymeric components. A strong difference in the magnitudes of the flocculating effect for A and C copolymers is observed in water. In the region of high ionic strengths (0.1–0.4 N) this difference becomes far less distinct. The flocculating activities of A and C copolymers were compared when introduced as the first (λA and λC) and the second (λA and λC ) additives. It was shown that λAA >1 and λCC >1. Such relationship between λA and λA , λC and λC indicates that selective interactions between A and C copolymers play an essential role in the flocculation processes. The last statement was indirectly confirmed in the present work by the data of electrochemical and viscosimetric studies. When using C copolymer as the second additive in the region of low ionic strengths its main function undergoes reversal, and the copolymer begins to operate not as a flocculant, but as a stabilizer of disperse phase particles (λC < 0). Received: 14 April 2000 Accepted: 4 August 2000  相似文献   

14.
Graft copolymers containing poly(ethylene oxide) side chains on a polystyrene backbone have been synthesized. Styrene copolymers synthesized by free radical mechanism and containing between 5 and 15 mol % acrylamide or methacrylamide were used as backbones. The amide groups in the copolymers were ionized by using potassium tert-butoxide or potassium naphthalene, and grafting was achieved by utilizing the amide anions as initiator sites for the polymerization of ethylene oxide in 2-ethoxyethyl ether at 65°C. The graft copolymers were characterized with respect to molecular weight and composition using elemental analysis, NMR, gel permeation chromatography, IR, and viscosity measurements. The size of the side chains were between 600 and 2000 g/mol. GPC results from a hydrolyzed graft copolymer sample suggest a narrow size distribution for the poly(ethylene oxide) grafts. Solution properties of the graft copolymers were investigated in different toluene/methanol mixtures. The intrinsic viscosities of the graft copolymers were found to depend primarily on the poly(ethylene oxide) content rather than the graft density or the poly(ethylene oxide) chain length. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Poly(N-isopropylacrylamide) oligomer was immobilized onto a silica gel surface. The gel adsorbed a hydrophobic protein γ-globulin (IgG) at 37°C, however, did not adsorb IgG at 24°C. The adsorbed IgG at 37°C was adsorbed by lowering the temperatue, No adsorption of a hydrophilic protein bovin serum albumin (BSA) onto this matrix was observed at 37°C nor 24°C.  相似文献   

16.
PEG was grafted onto chitosan regioselectively at the hydroxyl groups with phthaloylchitosan as an intermediate. After the graft reaction, the phthaloyl groups were deprotected to give chitosan-g-PEG copolymers with free amino groups. The chemical structure of the graft copolymers was confirmed by FT-IR, (1)H and (13)C NMR spectroscopy. The resulting graft copolymers showed improved thermal stability compared to the original chitosan, and showed a lower thermal transition temperature at around 185 degrees C. Chitosan-g-PEG exhibited a high affinity not only for aqueous acid but also for some organic solvents because of the presence of abundant free amino groups and PEG branches, and it exhibited higher hygroscopicity and moisture retention ability than chitosan. [structure: see text]  相似文献   

17.
 The application of time-resolved fluorescence anisotropy measurements (TRAMS) to the investigation of the adsorption of the dye Rhodamine B and a Rhodamine B-labelled cationic polyelectrolyte onto colloidal silica (Ludox) is described. For Rhodamine B the time-resolved fluorescence anisotropy behavior observed can be interpreted using a model consisting of fluorophores with two distinct fluorescence decay lifetimes and two rotational correlation times corresponding to the fluorophore free in solution and bound to the Ludox. Details of the binding obtained from a global analysis of the data are reported. Restricted motion of the fluorescently labelled polyelectrolyte is also observ-ed on adsorption. The considerations for the general application of TRAMS for monitoring adsorption behavior are discussed. Received: 8 July 1998 Accepted: 10 August 1998  相似文献   

18.
Poly(diethylsiloxane) and its copolymers with various kinds of R1R2SiO (R1 = R2 = methyl or phenyl, or R1 = methyl and R2 = phenyl) units have been prepared by the equilibrium polymerization of cyclosiloxanes. All the polymers have been characterized by 1H and 29Si NMR, gel permeation chromatography, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) measurements. The results indicate that a random distribution of different units has been obtained in the structures of copolymers containing 50 mol % diethylsiloxane units content. DSC and DMA show that the presence of 2.5 mol % diphenylsiloxane units or 5.0 mol % methylphenylsiloxane units in the copolymer can disrupt the crystallinity and lead to noncrystalline copolymers with low glass‐transition temperatures (ranging from ?133 to ?137 °C according to DSC). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2722–2730, 2003  相似文献   

19.
A straightforward and efficient synthetic method that transforms poly(methyl methacrylate) (PMMA) into value‐added materials is presented. Specifically, PMMA is modified by transesterification to produce a variety of functional copolymers from a single starting material. Key to the reaction is the use of lithium alkoxides, prepared by treatment of primary alcohols with LDA, to displace the methyl esters. Under optimized conditions, up to 65% functionalization was achieved and copolymers containing alkyl, alkene, alkyne, benzyl, and (poly)ether side groups could be prepared. The versatility of this protocol was further demonstrated through the functionalization of both PMMA homo and block copolymers obtained through either radical polymerization (traditional and controlled) or anionic procedures. The scope of this strategy was illustrated by extension to a range of architectures and polymer backbones. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1566–1574  相似文献   

20.
The syntheses of polypropylene-graft-poly(l -lactide) copolymers (PP-g-PLAs) via copper (I)-catalyzed azide-alkyne cycloaddition “click” reaction (CuAAC) using azide side-chain functionalized polypropylene (PP-N3) and alkyne end-functionalized poly(l -lactide) (PLA-Alkyne) were reported. The CuAAC was then applied to azide and different feeding ratios of alkyne functional polymers to give PP-g-PLAs that were characterized by FTIR, 1H-NMR, GPC, DSC, and WCA measurements. The CuAAC click reaction was achieved by two different feeding ratio (PP-N3:PLA-Alkyne = 1:5 and 1:10) and thermal, biodegradable, and surface properties of obtained graft copolymers were investigated. The molar ratio of PLA were calculated as 72.7 (PP-g-PLA-1) and 78.4% (PP-g-PLA-2) by 1H-NMR spectroscopy. The water contact angle (WCA) values of PP-g-PLA-1 (81o ± 1.3) and PP-g-PLA-2 (75o ± 1.6) copolymers were compared with commercial chlorinated polypropylene (PP-Cl) (90o ± 1.0), suggesting a more hydrophilic nature of desired graft copolymers produced. Conversely, the enzymatic biodegradation studies revealed that the weight losses of graft copolymers were determined as 13.6 and 22.1%, which is about 4% for commercial PP-Cl sample. Thus, it was clear that this simple and facile method was effective in promoting biodegradation of commercial polypropylene and attractive particularly for worldwide environmental remediation goals. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2595–2601  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号