首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been little experimental work on flexural wave propagation in general and on flexural wave propagation in beams with discontinuities of cross section in particular. Experimental data are obtained for various test beams subjected to eccentric longitudinal impact. The bending strain versus time results are presented for several positions along a uniform beam and finite beams (of circular cross section) with discontinuities of cross section. Bending strain histories are recorded at several positions before and after the discontinuity. The effect of reflections on the propagated flexural wave is illustrated. The dispersion of the traveling flexural wave caused several alternating peaks within the duration of the original positive input pulse. The importance of investigating discontinuities of cross section in structures subjected to impact loading is clearly manifested.  相似文献   

2.
By using the formula derived in Part ( Ⅰ ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed. The impact force-time history between the structure and the moving rigid-body, shear force and bending moment distribution along the beams, axial force distribution along the bars were calculated. The wave propagation phenomena of the longitudinal wave in the bars, the flexural and shear waves in the beams were also analysed. The numerical results show that the time duration of impact force is controlled by the flexural wave and the longitudinal wave ; the shear effect in beams should not be neglected in the impact response analysis of structures.  相似文献   

3.
By using the formula derived in Part (Ⅰ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed.The impact force-time history between the structure and the moving rigid-body, shear force and bending moment distribution along the beams, axial force distribution along the bars were calculated. The wave propagation phenomena of the longitudinal wave in the bars, the flexural and shear waves in the beams were also analysed. The numerical results show that the time duration of impact force is controlled by the flexural wave and the longitudinal wave; the shear effect in beams should not be neglected in the impact response analysis of structures.  相似文献   

4.
The propagation of longitudinal and flexural waves in axisymmetric circular cylindrical shells with periodic circular axial curvature is studied using a finite element method previously developed by the authors. Of primary interest is the coupling of these wave modes due to the periodic axial curvature which results in the generation of two types of stop bands not present in straight circular cylinders. The first type is related to the periodic spacing and occurs independently for longitudinal and flexural wave modes without coupling. However, the second type is caused by longitudinal and flexural wave mode coupling due to the axial curvature. A parametric study is conducted where the effects of cylinder radius, degree of axial curvature, and periodic spacing on wave propagation characteristics are investigated. It is shown that even a small degree of periodic axial curvature results in significant stop bands associated with wave mode coupling. These stop bands are broad and conceivably could be tuned to a specific frequency range by judicious choice of the shell parameters. Forced harmonic analyses performed on finite periodic structures show that strong attenuation of longitudinal and flexural motion occurs in the frequency ranges associated with the stop bands of the infinite periodic structure.  相似文献   

5.
In this paper, a novel wavelet based spectral finite element is developed for studying elastic wave propagation in 1-D connected waveguides. First the partial differential wave equation is converted to simultaneous ordinary differential equations (ODEs) using Daubechies wavelet approximation in time. These ODEs are then solved using finite element (FE) technique by deriving the exact interpolating function in the transformed domain. Spectral element captures the exact mass distribution and thus the system size required is very much smaller then conventional FE. The localized nature of the compactly supported Daubechies wavelet allows easy imposition of initial-boundary values. This circumvents several disadvantages of the conventional spectral element formulation using Fast Fourier Transforms (FFT) particularly in the study of transient dynamics. The proposed method is used to study longitudinal and flexural wave propagation in rods, beams and frame structures. Numerical experiments are performed to show the advantages over FFT-based spectral element methods. The efficiency of the spectral formulation for impact force identification is also demonstrated.  相似文献   

6.
Analytical wave propagation studies in gradient elastic solids and structures are presented. These solids and structures involve an infinite space, a simple axial bar, a Bernoulli–Euler flexural beam and a Kirchhoff flexural plate. In all cases wave dispersion is observed as a result of introducing microstructural effects into the classical elastic material behavior through a simple gradient elasticity theory involving both micro-elastic and micro-inertia characteristics. It is observed that the micro-elastic characteristics are not enough for resulting in realistic dispersion curves and that the micro-inertia characteristics are needed in addition for that purpose for all the cases of solids and structures considered here. It is further observed that there exist similarities between the shear and rotary inertia corrections in the governing equations of motion for bars, beams and plates and the additions of micro-elastic (gradient elastic) and micro-inertia terms in the classical elastic material behavior in order to have wave dispersion in the above structures.  相似文献   

7.
In this study we consider linear thermoelastic wave propagation with second sound. We consider two theories; a theory based on the Maxwell-Cataneo relation and a linearized theory based on a simplified form of a generalization of classical thermoelasticity. We consider cylindrically and spherically symmetric longitudinal waves, and for both problems we obtain expressions for the initial discontinuities, and also the time rate of decay of propagating discontinuities. Numerical solutions are obtained from the application of the method of characteristics, and further, a technique is proposed which allows numerical solutions, valid for times large compared with the relaxation time, to be efficiently generated.  相似文献   

8.
When using a classical SHPB (split Hopkinson pressure bar) set-up, the useful measuring time is limited by the length of the bars, so that the maximum strain which can be measured in material testing applications is also limited. In this paper, a new method with no time limits is presented for measuring the force and displacement at any station on a bar from strain or velocity measurements performed at various places on the bar. The method takes the wave dispersion into account, as must inevitably be done when making long time measurements. It can be applied to one-dimensional and single-mode waves of all kinds propagating through a medium (flexural waves in beams, acoustic waves in wave guides, etc.). With bars of usual sizes, the measuring time can be up to 50 times longer than the time available with classical methods. An analysis of the sensitivity of the results to the accuracy of the experimental data and to the quality of the wave propagation modelling was also carried out. Experimental results are given which show the efficiency of the method.  相似文献   

9.
An investigation is made into the propagation and evolution of wave fronts in a porous medium which is intended to contain two phases: the porous solid, referred to as the skeleton, and the fluid within the interconnected pores formed by the skeleton. In particular, the microscopic density of each real material is assumed to be unchangeable, while the macroscopic density of each phase may change, associated with the volume fractions. A two-phase porous medium model is concisely introduced based on the work by de Boer. Propagation conditions and amplitude evolution of the discontinuity waves are presented by use of the idea of surfaces of discontinuity, where the wave front is treated as a surface of discontinuity. It is demonstrated that the saturation condition entails certain restrictions between the amplitudes of the longitudinal waves in the solid and fluid phases. Two propagation velocities are attained upon examining the existence of the discontinuity waves. It is found that a completely coupled longitudinal wave and a pure transverse wave are realizable in the two-phase porous medium. The discontinuity strength of the pore-pressure may be determined by the amplitude of the coupled longitudinal wave. In the case of homogeneous weak discontinuities, explicit evolution equations of the amplitudes for two types of discontinuity waves are derived.  相似文献   

10.
阶梯压电层合梁的波动动力学特性   总被引:2,自引:0,他引:2  
任建亭  姜节胜 《力学学报》2004,36(5):540-548
采用行波理论系统地研究了压电阶梯梁的自由振动分析以及强迫响应的分析方法. 基于分布 参数理论研究了压电阶梯梁的波传播特性,忽略柔性梁横向剪切和转动惯量的影响,给出了 梁的轴向和横向的简谐波解. 将压电阶梯梁离散化为单元,考虑压电片的刚度和质量的影响, 建立了节点散射模型. 应用位移连续和力平衡条件,推导了节点的波反射和波传递矩阵,在 此基础上,引入波循环矩阵的概念,给出波循环矩阵、波传递系数矩阵的确定方法. 应用波 循环矩阵可以有效地计算结构的固有频率. 另外,应用波传递系数研究了压电陶瓷作动器位 置对其驱动能力的影响. 得出两个主要结论:1)作动器靠近悬臂梁固定端将有较强的驱动 能力,悬臂梁边界反射行波产生弯曲消失波有利于增大压电波的模态传递系数;2)模态传 递系数与固有频率的灵敏度密切相关,波传递系数越大, 对应该处固有频率变化灵敏度越大. 另外,数值算例表明了行波方法比有限元方法具有更高的计算精度.  相似文献   

11.
A method for the localization and characterization of defects in waveguide-like structures is presented in this paper. In contrast to traditional ultrasound and guided wave techniques, a broadband signal is used to enforce strong dispersion of the flexural wave mode. Since dispersion is well compensated in a time reversal experiment we use a time reversal numerical simulation to identify the origin and the original shape of the flexural wave excited at a local non-uniformity due to mode conversion. Limitations of the time reversal process for broadband signals due to multimode and evanescent behavior of guided waves are discussed and eliminated using a Timoshenko beam model. The resulting novel process which uses both flexural and longitudinal wave information allows detection, localization and size estimation of several defects in a beam with only a single measurement. The method proposed is experimentally validated on rectangular solid beams and cylindrical hollow beams with notches of different sizes and positions. Up to three notches could be localized from one measurement, with a maximum error of 3% with respect to the propagation distance. The size was accurately predicted for notches as small as 0.5 mm depth or 8.3% of the cross section, using a generalized spring model of a crack.  相似文献   

12.
This paper uses a rate-type approach of the non-monotone elasticity to describe large and rapid motions of a string made of a phase transforming material like shape memory alloy (SMA). The nucleation mechanism, the propagation of phase boundaries, of longitudinal and transverse front waves are carefully analyzed. The influence of the slope of the equilibrium curve on the growth and decay of the amplitude of the first and second order discontinuities is studied. The nucleation and wave propagation phenomena which accompany the damping effect of SMA string submitted to a sudden transverse motion are numerically investigated.  相似文献   

13.
An experimental method is developed to perform Hopkinson tests by means of viscoelastic bars by considering the wave propagation attenuation and dispersion due to the material rheological properties and the bar radial inertia (geometric effect). A propagation coefficient, representative of the wave dispersion and attenuation, is evaluated experimentally. Thus, the Pochhammer and Chree frequency equation is not necessary. Any bar cross-section shapes can be employed, and the knowledge of the bar mechanical properties is useless. The propagation coefficients for two PMMA bars with different diameters and for an elastic aluminum alloy bar are evaluated. These coefficients are used to determine the normal forces at the free end of a bar and at the ends of two bars held in contact. As an application, the mechanical impedance of an accelerometer is evaluated. A part of this work has been performed in the Laboratoire Matériaux Endommagement Fiabilité of the Ecole Nationale Supérieure des Arts et Métiers de Bordeaux.  相似文献   

14.
Plastic wave experiments are reviewed, beginning with the earliest experiments of Bell on the propagation of incremental waves in prestressed bars. Attention is directed to experiments in which the plastic wave profile at different distances of propagation is used to infer information on the dynamic plastic response of the material in which the wave is propagating. Plastic waves in bars, tubes, and plates are considered. Principal results are reviewed on such primary physical features as the velocity of propagation of incremental waves, the dynamic elastic limit, the wave profiles of finite amplitude waves, and the effects of nonproportional loading. Objectives for future research are suggested.  相似文献   

15.
Methods based on guided ultrasonic waves are gaining increasing attention for the non-destructive inspection and condition monitoring of multi-wire strands used in civil structures such as prestressing tendons and cable stays. In this paper we examine the wave propagation problem in seven-wire strands at the level of the individual wires comprising the strand. Through a broad-band, laser ultrasonic setup and a time—frequency wavelet transform processing, longitudinal and flexural waves are characterized in terms of dispersive velocity and frequency-dependent attenuation. These vibrating frequencies propagating with minimal losses are identified as they are suitable for long-range inspection of the strands. In addition, the wave transmission spectra are found to be sensitive to the load level, suggesting the potential for continuous load monitoring in the field.  相似文献   

16.
The wave propagation in an infinite, homogeneous, transversely isotropic solid cylinder of arbitrary cross-section is studied using Fourier expansion collocation method, within the frame work of linearized, three-dimensional theory of thermoelasticity. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat conduction. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmetric) modes of vibration and are studied numerically for elliptic and parabolic cross-sectional zinc cylinders. The computed non-dimensional wave numbers are presented in the form of dispersion curves.  相似文献   

17.
In this paper, we study the propagation of high-intensity acoustic noise in free space and in waveguide systems. A mathematical model generalizing the Burgers equation is used. It describes the nonlinear wave evolution inside tubes of variable cross-section, as well as in ray tubes, if the geometric approximation for heterogeneous media is used. The generalized equation transforms to the common Burgers equation with a dissipative parameter, known as the “Reynolds–Goldberg number”. In our model, this number depends on the distance travelled by the wave. With a zero “viscous” dissipative term, the model reduces to the Riemann (or Hopf) equation. Its solution presents the field by an implicit function. The spectral form of this solution makes it possible to derive explicit expressions for both dynamic and statistical characteristics of intense waves. The use of a spectral approach allowed us to describe the high-intensity noise in media with zero and finite viscosity. Applicability conditions of these solutions are defined. Since the phase matching is fulfilled for any triplet of interacting spectral components, there is an avalanche-like increase in the number of harmonics and the formation of shocks. The relationship between these discontinuities and other singularities and the high-frequency asymptotic of intense noise is studied. The possibility is shown to enhance nonlinear effects in waveguide systems during the evolution of noise.  相似文献   

18.
Bakholdin  I. B. 《Fluid Dynamics》1985,20(5):784-790
The nonlinear ray method [1] is used to investigate the propagation of solitary waves over an uneven bottom. In the process of nonlinear evolution of the wave front, singular points develop in it; these are treated in the given model as discontinuities [2, 3]. In contrast to earlier studies, it is not assumed here that the intensity of the discontinuity is weak. Boundary conditions at the discontinuities are introduced on the basis of the results of Miles and Bakholdin [4–6], and this makes it possible to take into account the energy loss at a discontinuity and the effects of wave reflection and construct a number of new self-similar solutions for the propagation of a wave above a ridge and trough. The main attention is devoted to considering how the type of solution depends on the parameters of the wave and the relief. For certain values of the parameters, the self-similar solution of the encounter of a homogeneous wave with a ridge is not unique. The reason for this is the singularity of the relief at the end of the ridge. A numerical investigation has therefore also been made of the encounter of a wave with a ridge having a smooth relief at its end. For an under-water trough and a ridge—trough system, self-similar solutions with complete or partial reflection or transmission of the wave energy into the trough are found. A reflected wave can also arise from an encounter with a ridge.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 137–144, September–October, 1985.I thank A. G. Kulikovskii and A. A. Barmin for their interest in the work and for valuable comments made as the paper was being prepared for press.  相似文献   

19.
A model of a fluidized bed as a medium consisting of two interacting interpenetrating ideal fluids is used to investigate the propagation of one-dimensional linear and nonlinear perturbations of the particle concentration in a gas-fluidized bed. The interaction of the particles with each other is taken into account by introducing into the momentum conservation equation for the dispersed phase an effective pressure that depends on the local porosity of the bed and the relative velocity of the dispersed and dispersion phases. The conditions of hyperbolicity of the system of equations describing wave propagation are determined. The stability of the uniform state is investigated. Dispersion effects in the fluidized bed are considered. The propagation of a steady dispersed-phase concentration wave is investigated. The conditions of formation of concentration discontinuities at the steady wave front are determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 81–89, March–April, 1987.  相似文献   

20.
Displacements of mechanical waves superposed onto wind waves were measured with a laser displacement gauge in a wind-wave tank. The effects of wave breaking, especially the spilling breaking type, on the wave-variance spectra are investigated. In the absence of wave breaking, the quasi-equilibrium spectrum consists of an f –7/3 subrange in the capillary regime, and its spectral density increases with increasing wind speed. When intense spilling breaking occurs, the water surface is saturated with small-scale features that cause not only an increase in the spectral density but also a reduction in the slope of the spectrum at high frequencies. Velocity components under the water surface were measured with a laser Doppler velocimeter. The energy spectra of the vertical and longitudinal velocity components in breaking waves are practically identical in the frequency range near the dominant wave frequency. At higher frequencies, the spectra generally follow Kolmogorov's –5/3 law. In the intermediate frequency range, we observed a higher spectral density for the vertical velocity component than for its longitudinal counterpart. These results suggest that turbulence energy is transferred from the vertical component to the longitudinal component in breaking waves. The acceleration of the water motion becomes as large as gravitational acceleration when intense wave breaking takes place. The flow field in breaking waves is highly dissipative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号