首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We demonstrated a diode-pumped passively mode-locked c-cut Nd:LuVO4 picosecond laser with a semiconductor saturable-absorber mirror (SESAM) at a wavelength of 1067.8 nm. Due to the wide bandwidth of 0.48 nm, stable mode-locking has been generated with a duration as short as 3.7 ps, which is shorter than for the a-cut Nd:LuVO4 laser. A maximum output power of 1.67 W was achieved to give a highest peak power of 3.47 KW at 18 W absorbed pump power.  相似文献   

2.
A passively Q-switched and mode-locked Nd:LuVO4 laser with V:YAG at 1.34 μm was successfully demonstrated. Comparisons between c-cut and a-cut Nd:LuVO4 lasers were experimentally made. The maximum average output power of 170 mW, the highest Q-switched pulse energy of 4.5 μJ were obtained in c-cut Nd:LuVO4 laser. The duration of mode-locked pulse was estimated to be less than 540 ps with repetition rate of 110 MHz.  相似文献   

3.
We report on a high-power diode-end-pumped self-mode-locked Nd:LuVO4 laser with the pulse repetition rate up to 9.52 GHz for the first time. The large third-order nonlinearity of the Nd:LuVO4 crystal is exploited to efficiently achieve a fairly stable self-mode-locked operation without any additional components. The detailed characteristics of the compact efficient self-mode-locked laser are experimentally investigated and theoretically analyzed. With the incident pump power of 2.6 W, the average output power up to 0.54 W is generated with the pulse width of 7.9 ps at the pulse repetition rate of 9.52 GHz.  相似文献   

4.
Output power dependences of composite Nd3+:YVO4 Raman laser stationary generation on the longitudinal diode pump power are measured at different transmissions of the output mirror at the Stokes radiation frequency. The deviation of the measured dependences from linear is explained by the influence of thermal effects on both the overlap of the beams and diffraction losses. A method to estimate the laser and Stokes losses in the cavity and the parameters characterizing the overlap of the laser radiation with the pump and Stokes beams is proposed. A Stokes-component of power 2.1 W is obtained and corresponds to 12% diode-to-Stokes efficiency.  相似文献   

5.
A dual-wavelength continuous-wave (CW) diode-pumped Nd:LuVO4 laser that generates simultaneous laser action at the wavelengths 1066 and 1343 nm is demonstrated. A total dual-wavelength output power of 2.58 W was achieved at the incident pump power of 18.2 W. Furthermore, intracavity sum-frequency mixing at 1066 and 1343 nm was then realized in a LBO crystal to reach the yellow range. We obtained a total CW yellow output power of 830 mW at 594 nm.  相似文献   

6.
A laser crystal of Yb:LuVO4 with high optical quality was grown by the Czochralski technique. Its thermal properties including specific heat, thermal expansion coefficients, and thermal conductivities along the a- and c-axis have been measured for the first time. Continuous-wave laser output up to 3.5 W at 1031 nm was obtained at room temperature through end-pumping by a high-power diode laser. The corresponding optical conversion efficiency was 43% and the slope efficiency was 72%. PACS 42.55.Xi; 66.60.+a  相似文献   

7.
We report on a passively Q-switched diode-pumped Nd:YVO4 laser polarized along the a axis (corresponding to the smallest value of emission cross section at 1064 nm), generating 157-μJ pulses with 6.0-ns time duration (>20 kW peak power) and 3.6 W of average power at 1064 nm with good beam quality (M2<1.4). The selection of the polarization was performed by a novel technique relying on the birefringence of the laser crystal and on the misalignment sensitivity of the resonator. Received: 30 September 2002 / Revised version: 22 November 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +39-382/422583, E-mail: agnesi@ele.unipv.it  相似文献   

8.
We report a continuous-wave (CW) coherent green radiation at 533 nm by intracavity frequency doubling generation of 1066 nm Nd:LuVO4 laser. With incident pump power of 18.2 W, output power of 4.3 W at 533 nm has been obtained using a 5 mm-long LBO crystal. The optical conversion efficiency was up to 23.6%. At the output power level of 4.3 W, the output stability is better than 3%. The beam quality M2 values were equal to 1.13 and 1.21 in X and Y directions, respectively.  相似文献   

9.
We report a continuous-wave (CW) yellow laser emission by sum-frequency mixing in two Nd:LuVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a yellow laser at 590 nm is obtained by 1066 and 1321 nm intracavity sum-frequency mixing. The maximum laser output power of 223 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 223 mW, the output stability is better than 4.5%.  相似文献   

10.
A simple and compact diode-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:LuVO4/KTP green laser were demonstrated successfully for the first time. At an incident pump power of 6.5 W, an average output power of 663 mW, a pulse width of 26 ns were obtained with a PRF of 10 kHz. The pulse energy and peak power of the green light were determined to be 66.3 μJ and 2.55 kW, respectively.  相似文献   

11.
We report for the first time a continuous-wave (CW) blue laser emission by sum-frequency mixing in Nd:LuVO4 crystal. Using type-I critical phase-matching (CPM) LBO crystal, a blue laser at 493 nm is obtained by 1066 and 916 nm intracavity sum-frequency mixing. The maximum laser output power of 520 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 520 mW, the output stability is better than 2.8%. The beam quality M 2 value is are about 1.22 and 1.31 in both horizontal and vertical dimensions respectively.  相似文献   

12.
By using a piece of single-walled carbon nanotube saturable absorber, the performance of the passively Q-switched composite Nd:YVO4 laser has been demonstrated for the first time. The maximum average output power and the shortest pulse width are 1220 mW and 103 ns at the incident pump power of 5.04 W for a 10% transmission of the output coupler. The highest pulse repetition rate of 415.6 kHz and the largest single-pulse energy of 2.94 μJ are also obtained. The composite Nd:YVO4 crystal has more excellent laser performance than the normal Nd:YVO4 crystal at 1064 nm.  相似文献   

13.
We report an efficient intracavity second-harmonic generation (SHG) at 1066 nm in a non-linear optical crystal, GdCa4O(BO3)3 (GdCOB), performed with a diode end pumped continuous-wave (CW) Nd:LuVO4 laser. In the case of a laser with a Nd:LuVO4 crystal frequency-doubled with a GdCOB crystal cut for type I frequency doubling. A CW SHG output power of 5.18 W has been obtained using a 10 mm long GCOB crystal. The optical conversion efficiency with respect to the incident pump power was 28.5%.  相似文献   

14.
We present for the first time a Nd:YVO4 laser emitting at 1064 nm intracavity pumped by a 916 nm diode-pumped Nd:LuVO4 laser. A 809 nm laser diode is used to pump the Nd:LuVO4 crystal emitting at 916 nm, a Nd:YVO4 laser crystal was pumped at 916 nm and lased at 1064 nm. Intracavity sum-frequency mixing at 916 and 1064 nm was then realized in a LiB3O6 (LBO) crystal to reach the blue range. We obtained a continuous-wave output power of 216 mW at 492 nm under 19.6 W of incident pump power at 809 nm.  相似文献   

15.
This work presents experimental results concerning an actively Q-switched intracavity frequency-doubled Nd:LuVO4/LBO green laser with an acousto-optic modulator operated at the wavelength of 0.53 μm. The green average output power of 2.8 W was obtained at a pump power of 16.3 W and a pulse repetition rate of 20 kHz, resulting in an optical conversion efficiency of 17%. When the pulse repetition rate is operated at 5 kHz, the shortest pulse width and the highest peak power at 0.53 μm were measured to be 26.5 ns and 8.43 kW, respectively.  相似文献   

16.
We report the efficient blue laser at 458 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode pumped Nd:LuVO4 laser on the 4 F 3/24 I 9/2 transition at 916 nm. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.2 W, as high as 1.73 W of continuous wave (CW) output power at 458 nm is achieved. The optical-to-optical conversion efficiency is up to 9.5%, and the fluctuation of the red output power was better than 3.5% in the given 30 min.  相似文献   

17.
This work presents experimental results concerning a passively Q-switched intracavity frequencydoubled Nd:LuVO4/LBO green laser with a Cr4+:YAG saturable absorber operated at the wavelength of 0.53 μm. A maximal output power of 1.28 W was obtained at a pump power of 16.34 W, and peak power, pulse width as well as repetition frequency were 1.48 kW, 41 ns and 21 kHz, respectively.  相似文献   

18.
We demonstrate a low-threshold and efficient diode-pumped passively continuous wave (CW) mode-locked Nd:GdVO4 laser with a reflective semiconductor saturable absorber mirror (SESAM). The threshold for the continuous wave was 0.36 W, and it is the lowest threshold for a continuous wave in a passively mode-locked Nd:GdVO4 laser to our knowledge. The maximum average output power of 1.82 W was obtained at a pump power of 6.65 W with a slope efficiency of about 29%. The CW mode-locked pulse duration was measured to be about 10.5 ps with a 116-MHz repetition rate.  相似文献   

19.
We report a yellow-green laser at 544.5 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1089 nm Nd:LuVO4 laser under in-band diode pumping at 888 nm. An LBO crystal, cut for critical type I phase matching is used for second harmonic generation of the laser. At an incident pump power of 17.9 W, as high as 3.81 W of CW output power at 544.5 nm is achieved. The optical-to-optical conversion efficiency is up to 21.3%, and the fluctuation of the yellow-green output power was better than 3.7% in the given 4 h.  相似文献   

20.
Passively Q-switched yellow output from a frequency-doubled self-stimulating Raman composite Nd:YVO4/YVO4 laser using a Cr:YAG saturable absorber is reported. Maximum yellow output power of 264 mW was obtained with corresponding diode to yellow conversion efficiency of 5.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号