首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main purpose of this paper is to explore the solutions of Bianchi type-III cosmological model in Lyra geometry in the background of anisotropic dark energy. The general form of the anisotropy parameter of the expansion for Bianchi type-III space time is obtained in the presence of a single imperfect fluid with a dynamical anisotropic equation of state parameter and a dynamical energy density in Lyra geometry. A special law is assumed for the anisotropy of the fluid with reduces the anisotropy parameter of the expansion to a simple form $\Delta \propto \frac{1}{H^{2}V^{2}}$ . The exact solutions of the field equations, under the assumption on the anisotropy of the fluid, are obtained for exponential and power law volumetric expansion. The isotropy of the fluid, space and expansion are discussed. It is observed that the universe can approach to isotropy monotonically even in the presence of an anisotropic fluid. The anisotropy of the fluid also isotropizes at later times for accelerating models. The expression for the look-back time, proper distance, luminosity distance and angular diameter distance are also derived.  相似文献   

2.
We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t U , be L ~ tU-2 ~ 10-122{\Lambda \sim t_{U}^{-2} \sim 10^{-122}} , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is Wk0 o -k/a02H2=-0.0055{\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055} , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.  相似文献   

3.
We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Wbh2 = 0.02263+0.00184-0.00162 (1s)+0.00213-0.00195 (2s){\Omega_{b}h^{2}\,{=}\,0.02263^{+0.00184}_{-0.00162} (1\sigma)^{+0.00213}_{-0.00195} (2\sigma)}, Bs = 0.7788+0.0736-0.0723(1s)+0.0918-0.0904 (2s){B_{s}\,{=}\,0.7788^{+0.0736}_{-0.0723}(1\sigma)^{+0.0918}_{-0.0904} (2\sigma)}, a = 0.1079+0.3397-0.2539 (1s)+0.4678-0.2911 (2s){\alpha\,{=}\,0.1079^{+0.3397}_{-0.2539} (1\sigma)^{+0.4678}_{-0.2911} (2\sigma)}, B = 0.00189+0.00583-0.00756(1s)+0.00660-0.00915 (2s){B\,{=}\,0.00189^{+0.00583}_{-0.00756}(1\sigma)^{+0.00660}_{-0.00915} (2\sigma)}, and H0=70.711+4.188-3.142 (1s)+5.281-4.149(2s){H_{0}=70.711^{+4.188}_{-3.142} (1\sigma)^{+5.281}_{-4.149}(2\sigma)}.  相似文献   

4.
The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological models representing massive strings by applying the variation law for generalized Hubble’s parameter that yields a constant value of deceleration parameter. We find that the constant value of deceleration parameter is reasonable for the present day universe. The variation law for Hubble’s parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier (Phys. Rev. D 28:2414, 1983) is used to construct massive string cosmological models for which we assume that the expansion (θ) in the model is proportional to the component s11\sigma^{1}_{1} of the shear tensor sji\sigma^{j}_{i}. This condition leads to A=(BC) m , where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at present epoch which is in good agreement by the results from recent supernovae observations. Some physical and geometric behaviour of the models are also discussed.  相似文献   

5.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

6.
As a first part of this work, experimental information about the decay of isotropic turbulence in ordinary hydrodynamics, [`(u2(t))] μ t-6/5\overline{\mathbf{u}^{2}(t)}\propto t^{-6/5}, is used as input in FRW equations in order to investigate how an initial fraction f of turbulent kinetic energy in the cosmic fluid influences the cosmological development in the late, quintessence/phantom, universe. First order perturbative theory to the first order in f is employed. It turns out that both in the Hubble factor and in the energy density, the influence from the turbulence fades away at late times. The divergences in these quantities near the Big Rip behave essentially as in a non-turbulent fluid. However, for the scale factor, the turbulence modification turns out to diverge logarithmically. As a second part of our work, we consider the full FRW equation in which the turbulent part of the dark energy is accounted for by a separate term. It is demonstrated that turbulence occurrence may change the future universe evolution due to dissipation of dark energy. For instance, the phantom-dominated universe becomes asymptotically a de Sitter one in the future, thus avoiding the Big Rip singularity.  相似文献   

7.
In this paper we have assumed charged non-perfect fluid as the material content of the space-time. The expression for the “mass function-M(r,y,z,t)” is obtained for the general situation and the contributions from the Ricci tensor in the form of material energy density ρ, pressure anisotropy [\fracp2+p32-p1][\frac{p_{2}+p_{3}}{2}-p_{1}] , electromagnetic field energy ℰ and the conformal Weyl tensor, viz. energy density of the free gravitational field ε (=\frac-3Y24p)(=\frac{-3\Psi_{2}}{4\pi}) are made explicit. This work is an extension of the work obtained earlier by Rao and Hasmani (Math. Today XIIA:71, 1993; New Directions in Relativity and Cosmology, Hadronic Press, Nonantum, 1997) for deriving general dynamical equations for Dingle’s space-times described by this most general orthogonal metric,
ds2=exp(n)dt2-exp(l)dr2-exp(2a)dy2-exp(2b)dz2,ds^2=\exp(\nu)dt^2-\exp(\lambda)dr^2-\exp(2\alpha)dy^2-\exp(2\beta)dz^2,  相似文献   

8.
We have studied the interaction of Al13-_{13}^{-} anion cluster with H2. Both the long range interaction and dissociative adsorption have been examined using the established correlated ab initio methods, MP2 and CCSD(T), in conjunction with the augmented correlation consistent basis sets up to aug-cc-pVTZ. The formation of the weakly bound (physisorbed) end-on anion complex Al13-_{13}^{-}...H2 is predicted for the interacting Al...H distances of 3.95 ? with the H-H axis pointing towards the ‘hollow’ site of Al13-_{13}^{-} and binding energy (De)D_{e}) of 0.7 kcal/mol at the estimated complete basis set (CBS) limit of CCSD(T). The barrier height for H2 dissociation on Al13-_{13}^{-} of 41.6 (42.9) kcal/mol calculated at the ZPVE-corrected CCSD(T)/aug-cc-pVTZ (estimated CCSD(T)/CBS) level is at least twice as large as that evaluated by us for a dissociative adsorption of H2 on an open-shell Al13 neutral cluster. To our knowledge, this report presents the first “benchmark” quality study of the physisorption and dissociative chemisorption of molecular hydrogen on Al13-_{13}^{-} anion cluster.  相似文献   

9.
Exact solution of Einstein’s field equations is obtained for massive string cosmological model of Bianchi III space-time using the technique given by Letelier (Phys. Rev. D 28:2414, 1983) in presence of perfect fluid and decaying vacuum energy density Λ. To get the deterministic solution of the field equations the expansion θ in the model is considered as proportional to the eigen value s2 2\sigma^{2}_{~2} of the shear tensor sj i\sigma^{j}_{~i} and also the fluid obeys the barotropic equation of state. It is observed that the particle density and the tension density of the string are comparable at the two ends and they fall off asymptotically at similar rate. But in early stage as well as at the late time of the evolution of the universe we have two types of scenario (i) universe is dominated by massive strings and (ii) universe is dominated by strings depending on the nature of the two constants L and . The value of cosmological constant Λ for the model is found to be small and positive which is supported by the results from recent supernovae Ia observations. Some physical and geometric properties of the model are also discussed.  相似文献   

10.
The conductivity of glasses in the 50\textP\text2 \textO\text5 - x\textV\text2 \textO\text5 - ( 50 - x )\textLi\text2 \textO50{\text{P}}_{\text{2}} {\text{O}}_{\text{5}} - x{\text{V}}_{\text{2}} {\text{O}}_{\text{5}} - \left( {50 - x} \right){\text{Li}}_{\text{2}} {\text{O}} system was studied as a function of temperature and composition. For all compositions, the conductivity variation as a function of temperature followed an Arrhenius type relationship. Isothermal variation of conductivity as a function of composition showed a minimum for a molar ratio x near 20. Probable mechanisms for decrease of conductivity with decrease of vanadium oxide concentration were explained. The minimum in room temperature was attributed to increase of V4+/V5+ with decrease of vanadium oxide in specific concentrations of vanadium oxide. Activation energy increased with decrease of V2O5 content. This behavior was attributed to increase of average spacing between vanadium ions.  相似文献   

11.
The angular deflection of light and radar echo delay are famous results predicted by general relativity. The gravitational lensing problems depend on the deviation of light from its straight line path in its basic equation. Using the Robertson-McVittie spacetime metric, which coincides thoroughly with the Schwarzschild metric in the isotropic coordinate and the FLRW metric for curvature parameter k=0 when M=0, we discuss the correction of cosmological expansion to the angular deviation of light path and the radar echo delay. The deviation terms arising from the expansion of universe are found to be simply -\frac4GMrminc2(\fracH022c2rmin2)-\frac{4GM}{r_{\mathit{min}}c^{2}}(\frac{H_{0}^{2}}{2c^{2}}r_{\mathit{min}}^{2}) for angular deviation and \frac2H023c3(rA3+rB3)\frac{2H_{0}^{2}}{3c^{3}}(r_{A}^{3}+r_{B}^{3}) for radar echo delay.  相似文献   

12.
A five dimensional Kaluza-Klein space-time is considered in the presence of a perfect fluid source with variable G and Λ. An expanding universe is found by using a relation between the metric potential and an equation of state. The gravitational constant is found to decrease with time as Gt −(1−ω) whereas the variation for the cosmological constant follows as Λ∼t −2, L ~ ([(R)\dot]/R)2\Lambda \sim (\dot{R}/R)^{2} and L ~ [(R)\ddot]/R\Lambda \sim \ddot{R}/R where ω is the equation of state parameter and R is the scale factor.  相似文献   

13.
The present study deals with dissipative future universe without big rip in context of Eckart formalism. The generalised Chaplygin gas, characterised by equation of state p=-\fracAr\frac1ap=-\frac{A}{\rho^{\frac{1}{\alpha}}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late time. It is demonstrated that, if the cosmic dark energy behaves like a fluid with equation of state p=ωρ; ω<−1 as well as Chaplygin gas simultaneously then the big rip problem does not arise and the scale factor is found to be regular for all time.  相似文献   

14.
In this paper, author studied homogeneous and anisotropic Bianchi type-V universe filled with matter and holographic dark energy (DE) components. The exact solutions to the corresponding Einstein’s field equations are obtained for exponential and power-law volumetric expansion. The holographic dark energy (DE) EoS parameter behaves like constant, i.e. ω Λ =?1, which is mathematically equivalent to cosmological constant (Λ) for exponential expansion of the model, whereas the holographic dark energy (DE) EoS parameter behaves like quintessence for power-law expansion of the model. A correspondence between the holographic dark energy (DE) models with the quintessence dark energy (DE) is also established. Quintessence potential and dynamics of the quintessence scalar field are reconstructed, which describe accelerated expansion of the universe. The statefinder diagnostic pair {r,s} is adopted to characterize different phases of the universe.  相似文献   

15.
We focus on the initial state spatial anisotropies, originating at the thermalization stage, for central collisions in relativistic heavy-ion collisions. We argue that the physics of fluctuations at the early stages of heavy ion collisions has strong similarities with the physics of density fluctuations in the early universe which give rise to remarkable acoustic peaks in the cosmic microwave background radiation (CMBR) power spectrum. Following the method of analysis in CMBR physics, we propose that a plot of root mean square values of the flow coefficients ?{[`(vn2 )] } o vnrms\sqrt {\overline {v_n^2 } } \equiv v_n^{rms} , calculated in a laboratory fixed coordinate system, for a large range of n from 1 to about 30, can give non-trivial information about the initial stages of the system and its evolution. We also argue that for all wavelengths λ of the anisotropy (at the surface of the plasma region) much larger than the acoustic horizon size Hsfr H_s^{f^r } at the freezeout stage, the resulting values of V n mns should be suppressed by a factor of order 2Hsfr /l2H_s^{f^r } /\lambda .  相似文献   

16.
We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log ε|≪Ωε −2|log ε|−1 where Ω is the rotational velocity and the coupling parameter is written as ε −2 with ε≪1. Three critical speeds can be identified. At \varOmega = \varOmegac1 ~ |loge|\varOmega=\varOmega_{\mathrm{c_{1}}}\sim |\log\varepsilon| vortices start to appear and for |loge| << \varOmega < \varOmegac2 ~ e-1|\log\varepsilon|\ll\varOmega< \varOmega_{\mathrm{c_{2}}}\sim \varepsilon^{-1} the vorticity is uniformly distributed over the disc. For \varOmega 3 \varOmega c2\varOmega\geq\varOmega _{\mathrm{c_{2}}} the centrifugal forces create a hole around the center with strongly depleted density. For Ωε −2|log ε|−1 vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at \varOmega = \varOmegac3 ~ e-2|loge|-1\varOmega=\varOmega_{\mathrm {c_{3}}}\sim\varepsilon ^{-2}|\log\varepsilon |^{-1} there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.  相似文献   

17.
The present study deals with a spatially homogeneous and anisotropic Bianchi type-I (B-I) cosmological models representing massive strings in normal gauge for Lyra’s manifold by applying the variation law for generalized Hubble’s parameter that yields a constant value of deceleration parameter. The variation law for Hubble’s parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law type. Using these two forms, Einstein’s modified field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier, P.S.: Phys. Rev. D 28, 2414 (1983) is used to construct massive string cosmological models for which we assume that the expansion (θ) in the model is proportional to the component s1 1\sigma^{1}_{~1} of the shear tensor sj i\sigma^{j}_{~i}. This condition leads to A=(BC) m , where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. It has been found that the displacement vector β behaves like cosmological term Λ in the normal gauge treatment and the solutions are consistent with recent observations of SNe Ia. It has been found that massive strings dominate in the both decelerating and accelerating universes. The strings dominate in the early universe and eventually disappear from the universe for sufficiently large times. This is in consistent with the current observations. Some physical and geometric behaviour of these models are also discussed.  相似文献   

18.
In this paper, two modified Ricci models are considered as the candidates of unified dark matter–dark energy. In model one, the energy density is given by rMR=3Mpl(aH2+b[(H)\dot])\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\alpha H^{2}+\beta\dot{H}), whereas, in model two, by rMR=3Mpl(\fraca6 R+g[(H)\ddot]H-1)\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\frac{\alpha}{6} R+\gamma\ddot{H}H^{-1}). We find that they can explain both dark matter and dark energy successfully. A constant equation of state of dark energy is obtained in model one, which means that it gives the same background evolution as the wCDM model, while model two can give an evolutionary equation of state of dark energy with the phantom divide line crossing in the near past.  相似文献   

19.
The temperature dependences of magnetic entropy change and refrigerant capacity have been calculated for a maximum field change of Δ H=30 kOe in as-quenched ribbons of the ferromagnetic shape memory alloy Ni50.4Mn34.9In14.7 around the structural reverse martensitic transformation and magnetic transition of austenite. The ribbons crystallize into a single-phase austenite with the L21-type crystal structure and Curie point of 284 K. At 262 K austenite starts its transformation into a 10-layered structurally modulated monoclinic martensite. The first- and second-order character of the structural and magnetic transitions was confirmed by the Arrott plot method. Despite the superior absolute value of the maximum magnetic entropy change obtained in the temperature interval where the reverse martensitic transformation occurs (|\varDelta SMmax|=7.2 J kg-1 K-1)(|\varDelta S_{\mathrm{M}}^{\max}|=7.2\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1}) with respect to that obtained around the ferromagnetic transition of austenite (|\varDelta SMmax|=2.6 J kg-1 K-1)(|\varDelta S_{\mathrm{M}}^{\max}|=2.6\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1}), the large average hysteretic losses due to the effect of the magnetic field on the phase transformation as well as the narrow thermal dependence of the magnetic entropy change make the temperature interval around the ferromagnetic transition of austenite of a higher effective refrigerant capacity (RCmagneff=95J kg-1\mathrm{RC}^{\mathrm{magn}}_{\mathrm{eff}}=95\mbox{J}\,\mbox{kg}^{-1} versus RCstructeff=60J kg-1)\mathrm{RC}^{\mathrm{struct}}_{\mathrm{eff}}=60\mbox{J}\,\mbox{kg}^{-1}).  相似文献   

20.
We examine the asymptotic behavior of the eigenvalue w(h) and corresponding eigenfunction associated with the variational problem m(h) o infy ? H1(W;C ) \fracòW \abs(i?+hA)y2 dx dy òW\absy2 dx dy \mu(h)\equiv\inf_{\psi\in H^{1}(\Omega;{\bf C} )} \frac{\int_{\Omega } \abs{(i\nabla+h{\bf A})\psi}^{2}\,dx\,dy} {\int_{\Omega }\abs{\psi}^{2}\,dx\,dy} in the regime h>>1. Here A is any vector field with curl equal to 1. The problem arises within the Ginzburg-Landau model for superconductivity with the function w(h) yielding the relationship between the critical temperature vs. applied magnetic field strength in the transition from normal to superconducting state in a thin mesoscopic sample with cross-section W ì \R2\Omega\subset\R^{2}. We first carry out a rigorous analysis of the associated problem on a half-plane and then rigorously justify some of the formal arguments of [BS], obtaining an expansion for w while also proving that the first eigenfunction decays to zero somewhere along the sample boundary ?W\partial \Omega when z is not a disc. For interior decay, we demonstrate that the rate is exponential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号