首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Locally rotationally symmetric Bianchi type I cosmological models are examined in the presence of dynamically anisotropic dark energy and perfect fluid. We assume that the dark energy (DE) is minimally interacting, has dynamical energy density, anisotropic equation of state parameter (EoS). The conservation of the energy-momentum tensor of the DE is assumed to consist of two separately additive conserved parts. A special law is assumed for the deviation from isotropic EoS, which is consistent with the assumption on the conservation of the energy-momentum tensor of the DE. Exact solutions of Einstein’s field equations are obtained by assuming a special law of variation for the mean Hubble parameter, which yields a constant value of the deceleration parameter. Geometrical and kinematic properties of the models and the behaviour of the anisotropy of the dark energy have been carried out. The models give dynamically anisotropic expansion history for the universe that allows to fine tune the isotropization of the Bianchi metric, hence the CMB anisotropy.  相似文献   

2.
The exact solutions of the Einstein field equations for dark energy in Kantowski-Sachs metric under the assumption on the anisotropy of the fluid are obtained for exponential and power-law volumetric expansions. The isotropy of the fluid, space and expansion are examined.  相似文献   

3.
In this review we discuss the evolution of the universe filled with dark energy with or without perfect fluid. In doing so we consider a number of cosmological models, namely Bianchi type I, III, V, VI0, VI and FRW ones. For the anisotropic cosmological models we have used proportionality condition as an additional constrain. The exact solutions to the field equations in quadrature are found in case of a BVI model. It was found that the proportionality condition used here imposed severe restriction on the energy-momentum tensor, namely it leads to isotropic distribution of matter. Anisotropic BVI0, BV, BIII and BIDE models with variable EoS parameter ω have been investigated by using a law of variation for the Hubble parameter. In this case the matter distribution remains anisotropic, though depending on the concrete model there appear different restrictions on the components of energy-momentum tensor. That is why we need an extra assumption such as variational a law for the Hubble parameter. It is observed that, at the early stage, the EoS parameter v is positive i.e. the universe was matter dominated at the early stage but at later time, the universe is evolving with negative values, i.e., the present epoch. DE model presents the dynamics of EoS parameter ω whose range is in good agreement with the acceptable range by the recent observations. A spatially homogeneous and anisotropic locally rotationally symmetric Bianchi-I space time filled with perfect fluid and anisotropic DE possessing dynamical energy density is studied. In the derived model, the EoS parameter of DE (ω(de)) is obtained as time varying and it is evolving with negative sign which may be attributed to the current accelerated expansion of Universe. The distance modulus curve of derived model is in good agreement with SNLS type Ia supernovae for high redshift value which in turn implies that the derived model is physically realistic. A system of two fluids within the scope of a spatially flat and isotropic FRW model is studied. The role of the two fluids, either minimally or directly coupled in the evolution of the dark energy parameter, has been investigated. In doing so we have used three different ansatzs regarding the scale factor that gives rise to a variable decelerating parameter. It is observed that, in the non-interacting case, both the open and flat universes can cross the phantom region whereas in the interacting case only the open universe can cross the phantom region. The stability and acceptability of the obtained solution are also investigated.  相似文献   

4.
In this paper, we have studied the solutions of plane-symmetric Universe with variable ω in the presence and the absence of magnetic field of energy density ρ B . A special law of variation for Hubble’s parameter proposed by Bermann in Nuovo Cimento B 74, 182 (1983) has been utilized to solve the field equations. Some physical and kinematical properties of the models are also discussed.  相似文献   

5.
Cosmological models for Bianchi type III and Kantowski-Sachs space-times within the framework of Lyra geometry are obtained. The physical behavior of the models is also discussed.  相似文献   

6.
We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.  相似文献   

7.
The dynamics of cosmological models with isotropic matter sources (perfect fluids) is extensively studied in the literature; in comparison, the dynamics of cosmological models with anisotropic matter sources is not. In this paper we consider spatially homogeneous locally rotationally symmetric solutions of the Einstein equations with a large class of anisotropic matter models including collisionless matter (Vlasov), elastic matter, and magnetic fields. The dynamics of models of Bianchi types I, II, and IX are completely described; the two most striking results are the following. (i) There exist matter models, compatible with the standard energy conditions, such that solutions of Bianchi type IX (closed cosmologies) need not necessarily recollapse; there is an open set of forever expanding solutions. (ii) Generic type IX solutions associated with a matter model like Vlasov matter exhibit oscillatory behavior toward the initial singularity. This behavior differs significantly from that of vacuum/perfect fluid cosmologies; hence “matter matters”. Finally, we indicate that our methods can probably be extended to treat a number of open problems—in particular, the dynamics of Bianchi type VIII and Kantowski-Sachs solutions.  相似文献   

8.
9.
Some perfect fluid solutions of Einstein's field equations are obtained in spacetimes with two hypersurface orthogonal space-lika commuting Killing vectors. The flow is assumed to be geodesic. The solutions depend on an arbitrary function of time which determines the equation of state. In the models derived one additional Killing vector exists and the solutions are actually Bianchi-type cosmological models.  相似文献   

10.
The self-consistent system of Einstein-Vlasov equations is investigated in a class of homogeneous spaces. The Bianchi Type I anisotropic cosmological model with orthogonal Killing vectors is considered in detail. It is shown that the energymomentum tensor of a collisionless gas is spatially anisotropic. Exact solutions of the Einstein-Vlasov equations are found in the case of strong anisotropy. The behavior of small perturbations is investigated for a mixture of an ideal fluid and a collisionless gas as well as for a nonrelativistic collisionless gas.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 3–8, May, 1981.  相似文献   

11.
12.
In this paper we investigate expanding Bianchi type I models with two tilted fluids with the same linear equation of state, characterized by the equation of state parameter w. Individually the fluids have non-zero energy fluxes w.r.t. the symmetry surfaces, but these cancel each other because of the Codazzi constraint. We prove that when w = 0 the model isotropizes to the future. Using numerical simulations and a linear analysis we also find the asymptotic states of models with w > 0. We find that future isotropization occurs if and only if w £ \frac13{w\leq \frac{1}{3}} . The results are compared to similar models investigated previously where the two fluids have different equation of state parameters.  相似文献   

13.
Einstein's equations with variableG and A scalars are considered for a Bianchi type I metric. A solution is found in which the cosmological term varies inversely with the square of time. As in the case of the flat Friedmann-Lemaître-Robertson-Walker (flrw) models discussed recently, there is then no dimensional constant associated with A. However, it is shown that the time behaviour of Bianchi type I inflationary solutions cannot be of the pure de Sitter type. This shows that if the flat FLRW inflationary solutions previously considered are perturbed by the introduction of Bianchi type I anisotropy, then the time evolution may be perturbed from the pure exponential form.  相似文献   

14.
This paper is a study of the effects of anisotropic matter sources on the qualitative evolution of spatially homogenous cosmologies of Bianchi type VIII. The analysis is based on a dynamical system approach and makes use of an anisotropic matter family developed by Calogero and Heinzle which generalises perfect fluids and provides a measure of deviation from isotropy. Thereby the role of perfect fluid solutions is put into a broader context. The results of this paper concern the past and future asymptotic dynamics of locally rotationally symmetric solutions of type VIII with anisotropic matter. It is shown that solutions whose matter source is sufficiently close to being isotropic exhibit the same qualitative dynamics as perfect fluid solutions. However a high degree of anisotropy of the matter model can cause dynamics to differ significantly from the vacuum and perfect fluid case.  相似文献   

15.
We find cosmological solutions with rotation of Bianchi type VIII for the energy-momentum tensor of a perfect fluid with heat flow.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 98–103, May, 1989.In conclusion the author expresses thanks to the participants in Professor D. D. Ivanenko's seminar for helpful discussions.  相似文献   

16.
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.  相似文献   

17.
The Einstein-Maxwell Field equations characterizing a nontitled Bianchi type V perfect fluid model with source-free electromagnetic field are solved exactly in the nonlocally rotationally symmetric case. It is found that these equations admit one and only one exact solution, expressible, however, in terms of two arbitrary functions.  相似文献   

18.
Dynamical models of prototype gravastars made of anisotropic dark energy are constructed, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p = (1 − γ)σ divides the whole spacetime into two regions, the internal region filled with a dark energy fluid, and the external Schwarzschild region. The models represent “bounded excursion” stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes. Here we show, for the first time in the literature, a model of gravastar and formation of black hole with both interior and thin shell constituted exclusively of dark energy. Besides, the sign of the parameter of anisotropy (p t p r ) seems to be relevant to the gravastar formation. The formation is favored when the tangential pressure is greater than the radial pressure, at least in the neighborhood of the isotropic case (ω = −1).  相似文献   

19.
We consider a spatially homogeneous and totally anisotropic Bianchi-I space-time with perfect fluid (dark matter and standard visible matter) and anisotropic dark energy, which has dynamical energy density. The two sources are assumed to interact minimally and therefore their energy momentum tensors are conserved separately. Using suitable physical assumptions, the field equations are solved exactly. Various dark energy models are studied and it is found that quintessence model is suitable for describing the present evolution of the universe. The geometrical and kinematical features of the models and the behavior of the anisotropy of the dark energy, are examined in detail.  相似文献   

20.
T. Singh  R. Chaubey 《Pramana》2008,71(3):447-458
The Bianchi Type-I Universe filled with dark energy from a wet dark fluid has been considered. A new equation of state for the dark energy component of the Universe has been used. It is modeled on the equation of state p = γ(ρρ*) which can describe a liquid, for example water. The exact solutions to the corresponding field equations are obtained in quadrature form. The solution for constant deceleration parameter have been studied in detail for both power-law and exponential forms. The cases γ = 1 and γ = 0 have also been analysed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号