首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Surface enhanced Raman scattering (SERS) in silver sol and normal Raman spectra in the bulk and in solution of 2,2' biquinoline (BQ) molecule have been investigated. The observed Raman bands along with their corresponding FTIR bands have been assigned based on the established assignments of the vibrational bands of the parent napthalene and quinoline molecules. Existence of both the cis and trans form of the BQ molecule in solution and in the bulk are inferred from the normal Raman and FTIR spectra, whereas SERS study reveal that in the surface adsorbed state the molecule exists in the cis form. Definite evidence of the charge transfer interaction to the overall contribution in the SER enhancement have been reported. The excitation profile also supports the CT interaction. Estimated enhancement factor of the principal SERS bands indicate that the molecule is adsorbed on the silver surface through both the nitrogen atoms with the molecular plane almost perpendicular to the surface. This preferred orientation of the molecule is in conformity with its existence in the cis form in the surface adsorbed state.  相似文献   

2.
Chlorophyll a (Chl-a) is at the heart of solar energy capture and conversion in plants. Because of this, Chl-a has been the subject of innumerable studies. Recently, we have been able to use quantum mechanical methods to calculate the vibrational properties of neutral and oxidized Chl-a in the gas phase [Wang, R.; Parameswaran, S.; Hastings, G. Vib. Spectrosc. 2007, 44, 357-368]. The calculated vibrational properties do not agree with experiment, however. One factor ignored in our calculations was how solvents could impact the vibrational properties. Here we calculate the vibrational properties of Chl-a and Chl-a+ in several solvents that span a wide range of dielectric constant. The calculated and experimental (Chl-a+-Chl-a) infrared difference spectra now show a remarkable similarity. However, the composition of the calculated vibrational modes are very different from that suggested from experiment. We therefore use our calculated data to make new suggestions as to the origin of the bands in experimental (Chl-a+-Chl-a) FTIR difference spectra. We indicate why bands in experimental spectra may have been misassigned. We also point to other experimental data that support our new band assignments. Assignment of bands in (Chl-a+-Chl-a) FTIR difference spectra were first made nearly 20 years ago. These assignments have formed the basis for evaluating all "cation minus neutral" FTIR difference spectra obtained for all photosynthetic systems since then. All of these experimental FTIR difference spectra should be re-examined in light of our new assignments.  相似文献   

3.
Fourier-transform infrared(FTIR),Raman and ultraviolet-visible spectra of 4,4'-bipyridine and its me-tal-organic coordination compounds synthesized from 4,4'-bipyridine and nitrate of Co(Ⅱ),Ni(Ⅱ) and Zn(Ⅱ) were measured and analyzed,respectively.The main FTIR and Raman bands were assigned in detail.The relationship between these characteristic bands and the structure of ligands and coordination compounds were discussed.  相似文献   

4.
Acetone and cyclopentane make a minimum boiling homogeneous binary azeotrope with mole ratio 2:3. Some characteristic vibrational modes, as well as (1)H NMR signals change due to the azeotrope formation. The extend of interaction of these molecules causes significant changes on some vibrational modes involved and (1)H NMR signals show some changes on their position. In this work the FTIR and (1)H NMR spectra of pure acetone, pure cyclopentane and corresponding azeotrope were recorded, mutual influences resulting from azeotrope formation have been analyzed, and spectral changes has been discussed. The unit-structure of cluster have been deduced, based on mole ratio, boiling point depression of constituents, and comparison between the spectra obtained by FTIR and (1)H NMR techniques.  相似文献   

5.
Acetone and cyclohexane make a binary azeotrope with mole ratio 3:1. Some characteristic vibrational modes of acetone and cyclohexane change due to the azeotrope formation. The extend of interaction of these molecules causes significant changes on vibrational modes involved, and (1)H NMR signals show some changes on their position. FTIR and (1)H NMR spectra of pure substances and corresponding azeotrope were recorded, mutual influences resulting from azeotrope formation have been analyzed, spectral changes have been discussed. The unit-structure of cluster were deduced based on mole ratio, boiling point depression of constituents and comparison between spectra obtained by FTIR and (1)H NMR techniques.  相似文献   

6.
7.
FTIR and laser Raman spectra of beta-alanine beta-alaninium picrate and dl-phenylalanine dl-phenylalaninium picrate crystals of space group P1 (C(i)) have been me in the 4000-50 cm(-1) range, at room temperature. The former crystal consists of beta-alanine beta-alaninium and the later dl-phenylalanine dl-phenylalaninium as cations. The presence of both carbonyl (CO) and carboxylate COO(-) groups in these crystals is the evidence for the existence of the zwitterion and the protonated forms. Factor group analysis has been made and the numbers of vibrational modes have been calculated. The tentative assignments of the observed bands are given. Fermi resonance has also been observed in one of the crystal beta-alanine beta-alaninium picrate. The picrate group forms the anion in both crystals and the characteristic bands nu(as)NO(2), nu(s)NO(2), and nu(phen)C-O stretching are observed in the spectra. These suggest that the picrate ion is unaffected by the presence of the cations.  相似文献   

8.
The infrared spectra of symmetrically and asymmetrically para-substituted tetraphenylporphyrins as well as their indium complexes and their aminoacid ethyl ester derivatives have been investigated and the assignment of absorption bands to characteristic vibrational modes has been proposed.  相似文献   

9.
The secondary structure of a water treatment coagulant protein extracted from Moringa oleifera (MO) seeds has been investigated by Fourier transform infrared spectroscopy (FTIR) in the dried state, and by circular dichroism (CD) spectroscopy. The FTIR and CD spectra indicate that the secondary structure of the protein is dominated by alpha-helix. The FTIR spectrum recorded two distinct and strong absorption bands at 1656 cm(-1) and 1542 cm(-1), in the usual range of absorption of helices of proteins. The CD spectrum showed the shape of mainly alpha-helical secondary structure (estimated to be 58+/-4%) characteristic of negative ellipticity bands near 222 nm and 208 nm and a positive band at 192 nm. The beta-sheet structure composition was estimated to be 10+/-3% whereas unordered structures were around 33%. Changes in solution pH affected the protein secondary structure significantly only at pH values above 10, as indicated by CD spectra, whereas ionic strength had minimal effect. CD data also showed that sodium dodecyl sulphate (SDS) interacts with the coagulant protein and modifies the protein conformation. The surfactant-induced conformational change of the coagulant protein was confirmed by quenching of tryptophan fluorescence of the protein.  相似文献   

10.
The protonation state of key aspartic acid residues in the O intermediate of bacteriorhodopsin (bR) has been investigated by time-resolved Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis. In an earlier study (Bousché et al., J. Biol Chem. 266, 11063-11067, 1991) we found that Asp-96 undergoes a deprotonation during the M-->N transition, confirming its role as a proton donor in the reprotonation pathway leading from the cytoplasm to the Schiff base. In addition, both Asp-85 and Asp-212, which protonate upon formation of the M intermediate, remain protonated in the N intermediate. In this study, we have utilized the mutant Tyr-185-->Phe (Y185F), which at high pH and salt concentrations exhibits a photocycle similar to wild type bR but has a much slower decay of the O intermediate. Y185F was expressed in native Halobacterium halobium and isolated as intact purple membrane fragments. Time-resolved FTIR difference spectra and visible difference spectra of this mutant were measured from hydrated multilayer films. A normal N intermediate in the photocycle of Y185F was identified on the basis of characteristic chromophore and protein vibrational bands. As N decays, bands characteristic of the all-trans O chromophore appear in the time-resolved FTIR difference spectra in the same time range as the appearance of a red-shifted photocycle intermediate absorbing near 640 nm. Based on our previous assignment of the carboxyl stretch bands to the four membrane embedded Asp groups: Asp-85, Asp-96, Asp-115 and Asp-212, we conclude that during O formation: (i) Asp-96 undergoes reprotonation. (ii) Asp-85 may undergo a small change in environment but remains protonated. (iii) Asp-212 remains partially protonated. In addition, reisomerization of the chromophore during the N-->O transition is accompanied by a major reversal of protein conformational changes which occurred during the earlier steps in the photocycle. These results are discussed in terms of a proposed mechanism for proton transport.  相似文献   

11.
Benzene and methanol make a minimum boiling point homogeneous binary azeotrope with the mole ratio 2:3. Some characteristic vibrational modes, as well as 1H NMR signals change due to the azeotrope formation. The extend of interaction of these molecules causes significant changes on some vibrational modes involved, and 1H NMR signals show some changes on their position. No IR, Raman, and NMR spectra have been reported for this constant boiling mixture, also there has not been any attempt to investigate the unit-structure of this azeotrope. In this work the FTIR, FT-Raman, and 1H NMR spectra of pure benzene, pure methanol, and corresponding azeotrope were recorded, mutual influences resulting from azeotrope formation have been analyzed, and spectral changes has been discussed. The unit-structure of cluster has been deduced based on mole ratio, boiling point depression of constituents, and comparison among the spectra obtained by FTIR, FT-Raman, and 1H NMR techniques.  相似文献   

12.
The FTIR spectra of pure magnesium-rich (Mg-rich) and magnesium-poor (Mg-poor) palygorskites, before and after short-term (<7 h) and long-term (360 h) acid leaching are presented here. Comparison of decomposition spectra of Mg-rich and Mg-poor palygorskites clearly shows that the absorption peaks related to pairs of octahedral cation differ depending on the octahedral site occupancy. Short-term acid leaching of palygorskites results in significant changes to FTIR absorption bands near 1200 and 790 cm-1. As the acid attack progresses, the band at 1200 cm-1 shifts to lower wavenumbers, whilst the band at 790 cm-1, which here is assigned to SiU-O-SiD symmetrical stretching vibration, shifts to higher wavelengths. Longer-term leaching of palygorskites results in the disappearance of 900-1200 cm-1 absorption bands, showing that the palygorskite has largely decomposed to amorphous silica. Assignments of several other bands have been made as follows: several vibrations relate to OH, i.e. 847 cm-1, hygroscopic water (1635 cm-1), Si-O vibrations 1100, 611-621, 470-481 cm-1, etc. appear in the FTIR spectra of 360 h acid leached palygorskite. Three bands near 1100, 611-621 and 470-481 cm-1 relate to Si-O vibration of an ideal hexagonal (Si2O5)n sheet.  相似文献   

13.
Effects of solar radiation on collagen and chitosan films   总被引:3,自引:0,他引:3  
Photo-aging and photo-degradation are the deleterious effect of chronic exposure to sun light of many materials made of natural polymers. The resistance of the products on the action of solar radiation is very important for material scientists. The effect of solar radiation on two natural polymers: collagen and chitosan as well as collagen/chitosan blends in the form of thin films has been studied by UV-Vis and FTIR spectroscopy. It was found that UV-Vis spectra, which characterise collagen and collagen/chitosan films, were significantly altered by solar radiation. FTIR spectra of collagen and collagen/chitosan films showed that after solar irradiation the positions of amide A and amide I bands were shifted to lower wavenumbers. There was not any significant alteration of chitosan UV-Vis and FTIR spectra after solar radiation. In the condition of the experiment chitosan films were resistant to the action of solar radiation. The effect of solar UV radiation in comparison to artificial UV radiation has been discussed.  相似文献   

14.
FTIR, UV-VIS and EPR spectra of manganese doped lead-tellurate glasses with composition xMnO·(100-x)[4TeO2·PbO2] where x=0, 1, 5, 10, 20, 30, 40mol% have been studied. The FTIR spectra show the formation of the Mn-O-Pb and Mn-O-Te bridging bonds by increasing of MnO concentration. The UV-VIS spectra show the Mn(+3) species exhibit pronounced absorption, which masks the Mn(+2) spin-forbidden absorption bands when Mn(+2) ions are in high concentrations in these glasses. The EPR spectra exhibit resonance signals characteristic of Mn(+2) ions. The resonance signal located at g≈2 is due to Mn(+2) ions in an environment close to octahedral symmetry, whereas the resonance at g≈4.3 and 3.3 are attributed to the rhombic surroundings of the Mn(+2) ions. The increase in the MnO content gives rise to absorption at g≈2.4 and the paramagnetic ions are involved in dinuclear manganese centers.  相似文献   

15.
红外光谱法直接鉴别苦丁茶的研究   总被引:3,自引:0,他引:3  
本文利用傅立叶变换红外光谱(FTIR)法快速、直接地测定了11种苦丁茶,并对所获得的指纹图谱进行特征峰指认和对比分析。结果表明:各种苦丁茶化学成分相同,而由于各成分间的相对含量的不同,使每种样品都有自己独特的红外谱图,不同产地、不同级别苦丁茶的红外吸收频率、吸收峰的相对强度都存在比较大的差异。同时还运用傅立叶变换红外光谱技术对不同产地、不同级别苦丁茶的混合化学体系进行了全组分快速分析,为苦丁茶的鉴别及质量控制提供了可靠的依据。  相似文献   

16.
The FTIR and FT Raman vibrational spectra of 1,5-methylnaphthalene (1,5-MN) have been recorded using Brunker IFS 66 V Spectrometer in the range 3600-10 cm(-1) in the solid phase. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The Optimized molecular geometry, harmonic frequencies, electronic polarizability, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state were calculated using ab initio Hartree Fock (HF) and density functional B3LYP methods (DFT) with 6-311++ G(d) basis set. With the help of different scaling factors, the observed vibrational wavenumbers in FTIR and FT Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range. The results of the calculations were applied to simulated infrared and Raman spectra of the title compound which showed excellent agreement with the observed spectra.  相似文献   

17.
The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

18.
The vibrational spectra of 2-amino-5-chloro benzonitrile (ACB) have been obtained by density functional theory (DFT) calculations. Normal coordinate analysis has been carried out to support the vibrational analysis. The results were compared with the experimental values. With the help of scaling procedures, the observed FTIR and FT Raman vibrational frequencies were analysed and compared with the theoretically predicted vibrational spectra. The assignments of bands to various normal modes of the molecules were also carried out.  相似文献   

19.
Detailed vibrational studies (FTIR and Raman on powder samples, polarized FTIR microscope on a small single crystal, polarized FTIR using Bruker reflection unit on a single crystal and polarized Raman) have been carried out. Vibrational spectra are discussed in relation to the crystal structure published previously. In this crystal a network of hydrogen bonds link water molecules, guanidinium cations and hydrogenphosphate ions. The 13 different hydrogen bonds in G2HP crystal structure are detected. On the basis of detailed vibrational studies the detailed assignment of observed bands was made. Calorimetric (DSC) studies have been performed, but no phase transition was found in the temperature range 100-350 K.  相似文献   

20.
Catalytic oxidations of primary, benzylic, and secondary alcohols to aldehydes and ketone using tetra-n-propylammonium perruthenate (TPAP) were carried out on resin supports for the first time. The reaction time course, percent conversion, and influence of catalyst amount have been determined by analyzing IR spectra taken directly on a single resin bead in real time. Using 0.2 equiv of TPAP, a 92-97% conversion of alcohol to aldehyde or ketone has been achieved in 0.7-4 h based on the rates (rate constants (1.9 x 10(-)(4))-(2.5 x 10(-)(3)) s(-)(1)) of disappearance and appearance of IR bands characteristic for alcohol, aldehyde, and ketone. The rapid adaptation of this oxidation method for solid-phase synthesis demonstrates that single-bead FTIR microspectroscopy is a powerful method for facilitating the time-consuming reaction optimization stage of combinatorial chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号